Quark mass determination from pseudoscalar mesons

Francesco Sanfilippo (Università "La Sapienza", Roma)

In collaboration with: Petros Dimopoulos, Roberto Frezzotti, Vittorio Lubicz, Guido Martinelli, Cecilia Tarantino, Silvano Simula

ETM collaboration

<ロト <回ト < 注ト < 注ト = 注

Light quark mass determination

O Average light quark mass determination

<ロト <回ト < 注ト < 注ト = 注

Scale setting

Strange quark mass determination

- **\bigcirc** Determination from K
- Oetermination from ss meson

Charm mass determination

- Determination from D/D_s
- **2** Determination from η_c

Technical info: typical ETM setup

Lattice setup

- Regularization: Wilson Twisted Mass at maximal twist
- Gauge action: Symanzik Improved, tree level
- O(a) improved
- Number of dynamical fermions: 2, lights degenerate

Configuration ensembles

- 4 lattice spacings, ranging from $0.05 0.10 \, fm$
- ullet Various sea masses in the range $10-50\,MeV$
- Pion mass: 280 500 *MeV*
- Two different volumes for some setups
- Typical statistics: 300-500 independent configurations

▲御▶ ▲理▶ ▲理▶

Correlation functions

- Pseudoscalar operator chosen: $ar{\psi}\gamma_5\psi$
- Evaluated stochastically using one-end trick

Light Quark Mass Determination

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Analysis strategy

- Fit $\mathfrak{a}m_{\pi}$ and $\mathfrak{a}f_{\pi}$ with $SU(2)\chi PT$ with discretization terms
- Extrapolate fitted expressions to the physical point and to the continuum
- Oetermine:
 - m_l^{phys} from the ratio $\frac{(aM_{\pi})^{fit}}{(af_{\pi})^{fit}}$
 - a from $\mathfrak{a} f_\pi$
- Renormalization constants Z_P for quark masses obtained in RI-MOM scheme [arXiv:1004.1115]
- Twisted Quark mass renormalize as Z_P^{-1}

Motivation

Differences from recent ETMC determination of m_l (arXiv:0911.5061): analysis perfomed simultaneously at the four available lattice spacings

Global SU(2) $\chi - PT$ fit using all the 4 lattice spacings

$$m_{\pi}^{2} = 2B_{0}m_{l}\left(1+m_{l}\log\frac{2B_{0}m_{l}}{\Lambda_{3}}+D_{m}a^{2}+T_{m}^{NNLO}\right)$$

$$f_{\pi} = f_{0}\left(1-2m_{l}\log\frac{2B_{0}m}{\Lambda_{4}}+D_{f}a^{2}+T_{f}^{NNLO}\right)$$

A) $NLO-SU(2)\chi PT$ without discretization effects (D=T=0)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 -

B)
$$NLO - SU(2)\chi PT$$
 with discretization effects ($T = 0$)

C)
$$NNLO - SU(2)\chi PT$$
 without discretization effects $(D = 0)$

D) $NNLO-SU(2)\chi PT$ with discretization effects

Finite volume effects treated analytically using χPT in finite box

- Colangelo-Durr-Haefeli [hep-lat/0503014] formulas
- Constraints:
 - $L \gtrsim 2 fm$ (p-regime of χPT)
 - $M_{\pi}L \gg 1$ (finite size effects are small)

M_{π}^2/m_l fit in $SU(2)\chi PT$ at NLO with disc effects

m_l from different fits

Strange Quark Mass Determination

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Ansatze for fits

Two kinds of fits: NLO SU(2) partially quenched:

$$M_K^2 = A_s + B_s m_l + C_s \mathfrak{a}^2$$

NNLO SU(3) with some (but not all) higher order terms:

$$M_{K}^{2} = 2B_{0} \frac{m_{l} + m_{s}}{2} \left(1 + \frac{2B_{0}}{(4\pi f_{0})^{2}} m_{s} \log m_{s} + Am_{l} + Bm_{s} + Cm_{s}^{2} + Dm_{l}m_{s} + (F + Gm_{s})a^{2} \right)$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三目 - のへで

- Finite volume effects are very small
- \mathfrak{a} , f_0 , m_l taken from the 4 different fits A B C D of m_π , in f_0 unit

 m_s from K in SU(2) fit

Chiral extrapolation at ref mass $m_s = 95 MeV$

Discretization effects on M_K^2 (chirally extrapolated)

What is the $s\bar{s}$ meson?

- We take into account only connected correlation functions
- In the real world the $s\bar{s}$ meson mixes with $(u\bar{u}+d\bar{d})$
- This would exist in a world with two different quarks with the same mass

The $s\bar{s}$ meson defined by χPT and the experimental values of M_{π} and M_{K} At LO in χPT : $M_{s\bar{s}}^2 = 2M_{K}^2 - M_{\pi}^2$

Main motivation

- The $s\bar{s}$ meson mass depend from m_l only through virtual loops
- One can expect to do little chiral extrapolation

This is the advantage of the tortuous procedure

Definition of physical $M_{s\bar{s}}$ in SU(2) fit

m_s from $s\bar{s}$ with SU(2) fit

Charm Quark Mass Determination

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Three different mesons: D, D_s, η_c

Ansatze for chiral and continuum limit:

$$M_D = A_c + B_c m_l + C_c a^2$$

$$M_{D_s} = A_c + B_c m_l + C_c m_s + D m_s m_l + (E_c + F m_s) a^2$$

$$M_{\eta_c} = A_c + B_c m_l + C_c a^2$$

Ansatze formulas for fit in m_c

Taking inspiration from HQET:

$$M_{D/D_s/\eta_c} = Am_c + B + C/m_c$$

< ロ > (四 > (四 > (三 > (三 >))) (三 =))

Either A or C can be put to 0

Determination from D meson

Discretization effects on M_{D_s} (m_l and m_s physical)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Preliminary results

(日) (四) (注) (注) (注) (注)

Lattice spacings from $(\mathfrak{a} f_{\pi})^{lat} / f_{\pi}^{phys}$

Discretization effects for M_π^2

Analysis strategy

Preliminary interpolation to fixed reference m_s^{ref}
 Procedure advantage: the analysis can be divided in two step

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

- For each separate reference mass extrapolate M_K^2 :
 - ${\scriptstyle \bullet}$ to the continuum limit ${\frak a} \to 0$
 - to the physical light quark mass m_l^{phys}
- Fit the continuum and chiral value of M_K^2
- Obtain physical strange

Definition of ss meson

Operative definition of $s\bar{s}$

- Take $M_{s\bar{s}}$, M_K and M_{π} for each lattice spacing
- Perform a fit of $M_{s\bar{s}}(M_K, M_{\pi}, \mathfrak{a})$ over $M_{s\bar{s}}^{Lat}$ in term of M_K^{Lat} and M_{π}^{Lat}

• Define
$$M_{s\overline{s}} \equiv M_{s\overline{s}} \left(M_{K}^{phys}, M_{\pi}^{phys}, \mathfrak{a} = 0 \right)$$

Ansatze for $M_{s\bar{s}}$ expression in terms of M_{π} and M_{K}

$$SU(2): M_{s\bar{s}}^{2} = A + B M_{\pi}^{2} + C M_{K}^{2} + D a^{2}$$

$$SU(3): M_{s\bar{s}} = (2M_{K}^{2} - M_{\pi}^{2}) (1 + (\xi_{s} - \xi_{l}) \log (2\xi_{s}) + (a_{V}/2 + 1) (\xi_{s} - \xi_{l}) + A\xi_{s}^{2} + B\xi_{s}\xi_{l}) - M_{\pi}^{2} (-\xi_{l} \log (2\xi_{l}) + \xi_{s} \log (2\xi_{s}) + a_{V} (\xi_{ls} - \xi_{l})) + C a^{2}$$

where
$$\xi_l = rac{M_\pi^2}{(4\pi f_0)^2}$$
 and $\xi_s = rac{2M_K^2 - M_\pi^2}{(4\pi f_0)^2}$

Correlation between data

- $M_{s\bar{s}}$, M_K are strongly correlated
- It is important to consider this correlation when performing the fit

Analysis strategy

- Reference mass are important also for this analysis
- $M_{s\bar{s}}$ mass is almost flat in m_l
- Discretization effects are not larger than in K

Ansatze for $M_{s\bar{s}}$ expression in term of m_l and m_s

$$SU(2): M_{s\bar{s}}^{2} = A_{s}m_{s} + B_{s}m_{s}m_{l} + C_{s}a^{2}$$

$$SU(3): M_{s\bar{s}} = Am_{s}(1 + (\xi_{s} - \xi_{l})\log(2\xi_{s}) + (a_{V}/2 + 1)(\xi_{s} - \xi_{l}) - m_{l}(-\xi_{l}\log(2\xi_{l}) + \xi_{s}\log(2\xi_{s}) + a_{V}(\xi_{ls} - \xi_{l})) + (B + Cm_{s})a^{2})$$

where
$$\xi_q = rac{2B_0 m_q}{(4\pi f_0)^2}$$

<ロト <四ト <注入 <注下 <注下 <

Chiral extrapolation of $M_{s\overline{s}}^2$ at $m_s = 95 MeV$

Discretization effects on M_{ss}^2 (chirally extrapolated)

Chiral extrapolation of M_D at $m_c = 1.16 \text{ GeV}$

Discretization effects on M_D (chirally extrapolated)

Determination from D_s meson

Chiral extrapolation of M_{D_s} at $m_c = 1.16 \, GeV$

Determination from η_c meson

Chiral extrapolation of M_{η_c} at $m_c = 1.16 \text{ GeV}$

Discretization effects on M_{η_c} (chirally extrapolated)

