Low-energy constants from Dirac eigenvalue correlators at NNLO in the epsilon expansion

arXiv:1004.5584, JHEP06(2010)028

Christoph Lehner Uni Regensburg, RIKEN/BNL Research Center

in collaboration with Shoji Hashimoto and Tilo Wettig

Lattice 2010, Villasimius, June 15 2010

Outline

- 1. Motivation
- 1.1 Epsilon expansion, Dirac eigenvalues, and LECs
- 1.2 JLQCD lattice data

2. The epsilon expansion at NNLO

3. Conclusions and Outlook

The ε expansion

We consider

- Lattice QCD: Euclidean QCD at finite volume V
- Small temperatures: Theory dominated by pions

The ε expansion

We consider

- Lattice QCD: Euclidean QCD at finite volume V
- Small temperatures: Theory dominated by pions
- Small quark masses

Compton wavelength of pions large compared to volume V, i.e.,

$$\sqrt{V}m_{\pi}^2 < 1$$
 .

QCD described by χ PT in the ε expansion

The ε expansion

The ε expansion (systematic expansion in $1/F^2\sqrt{V}$)

Leading order:

- Described by random matrix theory (RMT)
- Dirac eigenvalue distributions in RMT known
- Fit Dirac eigenvalue distributions: Extract LECs of χ PT

NLO:

Finite-volume corrections to LECs

NNLO:

Systematic deviations from RMT

Setup:

- a = 0.107(3) fm, 32×16^3 lattice points, $V^{1/4} \approx 1.7$ fm
- Overlap fermions: $N_f = 2$, $am_u = am_d = 0.002$, $m_{\pi}^2 \sqrt{V} \approx 1$
- Sea quarks at zero chemical potential
- Valence quarks at zero and nonzero imaginary chemical potential

Fit to RMT Dirac eigenvalue distributions:

• Extract leading-order LECs Σ and F (Normalization: $F_{\text{experiment}} \approx 90 \text{ MeV}$)

JLQCD: Fit to cumulant Dirac eigenvalue distribution:

 $a^{3}\Sigma^{\text{JLQCD}} = 0.00212(6)$

JLQCD lattice data JLQCD: Fit to cumulant Dirac eigenvalue distribution:

$$a^{3}\Sigma^{\text{JLQCD}} = 0.00212(6)$$

Check: Fit to distribution of lowest Dirac eigenvalue: $P_1(\lambda)$ - Fit to RMT 105 Lattice data 75 45 15 $\rightarrow a\lambda$ 0.003 0.009 0.015 0.021 0.027

 $\chi^2/dof = 2.9$, $a^3 \Sigma^{\text{RMT}} = 0.00208(2)$.

JLQCD: Meson correlators (Fukaya et. al. 2008): $F^{\text{meson}} = 87(6) \text{ MeV}$

Result from meson correlators

 $F^{\text{meson}} = 87(6) \text{ MeV}$

and result from Dirac eigenvalue shift due to imaginary chemical

 $F^{\text{RMT}} = 67(5) \text{ MeV}$

do not agree!

Result from meson correlators

 $F^{\text{meson}} = 87(6) \text{ MeV}$

and result from Dirac eigenvalue shift due to imaginary chemical

do not agree!

Include leading-order $1/F^2\sqrt{V}$ corrections, i.e., calculation at NLO in ε (Damgaard et. al. 2007, Akemann et. al. 2008, Lehner et. al. 2009):

 $F^{\rm NLO} = 51(4) \, {\rm MeV}$

Even worse agreement

Problem:

- χ^2 /dof of fits is large
- Systematic deviations from RMT render this method to determine F useless

This talk:

- Understand the systematic errors
- Solve the discrepancy regarding F

The ε expansion at NNLO (Lehner et. al. 2010)

Power counting:

$$V \sim \varepsilon^{-4}, \qquad \partial_{\rho} \sim \varepsilon, \qquad \pi(x) \sim \varepsilon,$$

 $m_{\pi} \sim \varepsilon^{2}, \qquad \mu \sim \varepsilon^{2}$

with pion fields $\pi(x)$ and mass m_{π} , and chemical potential μ .

- Calculate finite-volume effective action S_{eff} in terms of zero-momentum mode of Nambu-Goldstone manifold U₀ (diagrams generated by computer algebra, calculate special version of two-loop finite-volume sunset diagram).
- Compare resulting S_{eff} to RMT action

$$S_{\rm eff}^{
m LO/RMT} = -rac{V\Sigma}{2} \, {
m Tr}(M^{\dagger}U_0 + U_0^{-1}M) - rac{VF^2}{2} \, {
m Tr}(CU_0^{-1}CU_0)$$

with quark mass matrix M and quark chemical potential matrix C.

The ε expansion at NNLO (Lehner et. al. 2010)

Action at NNLO:

$$\begin{split} S_{\text{eff}}^{\text{NNLO}} &= -\frac{V \Sigma_{\text{eff}}^{\text{NNLO}}}{2} \operatorname{Tr}(M^{\dagger} U_0 + U_0^{-1} M) - \frac{V(F_{\text{eff}}^{\text{NNLO}})^2}{2} \operatorname{Tr}(C U_0^{-1} C U_0) \\ &+ \Upsilon_1 \Sigma(VF)^2 \operatorname{Tr}(C) [\operatorname{Tr}(U_0 \{ M^{\dagger}, C \}) + \operatorname{Tr}(U_0^{-1} \{ C, M \})] \\ & \cdots \\ &+ \Upsilon_8 (V\Sigma)^2 [\operatorname{Tr}(M U_0^{-1} M U_0^{-1}) + \operatorname{Tr}(M^{\dagger} U_0 M^{\dagger} U_0)] \\ &+ \mathcal{H}_2 (V\Sigma)^2 \operatorname{Tr}(M^{\dagger} M) \,. \end{split}$$

- Finite-volume corrections to Σ and F
- Non-RMT terms proportional to Υ_i and \mathcal{H}_2
- Υ_i , \mathcal{H}_2 , $\Sigma_{\text{eff}}^{\text{NNLO}}$, and $F_{\text{eff}}^{\text{NNLO}}$ depend on:
 - ▶ NLO LEC of χ PT
 - Geometry of spacetime box through finite-volume propagators

Different geometries

Reminder: JLQCD uses (a₂)

Parameters:

•
$$m_\pi^2 \sqrt{V} = 1$$

- *F* = 90 MeV
- *L* = 1.71 fm

 (b_x)

Systematic deviations from RMT

• $\Upsilon_1, \Upsilon_2, \Upsilon_3$ depend on geometry (a_x) or (b_x) for the same x:

 $\Upsilon_1, \Upsilon_2, \Upsilon_3 \propto \gamma$,

where γ contains the dependence on the geometry.

Implications for JLQCD simulation

Fit for F

Geometry (a₂): Dirac eigenvalue shift due to imaginary chemical potential $a\mu = 0.01$ ($\hat{d} = d\Sigma V$):

Fit for F

Geometry (b_2): Dirac eigenvalue shift due to imaginary chemical potential $a\mu = 0.01$ ($\hat{d} = d\Sigma V$):

Conclusions (JHEP06(2010)028):

- The NNLO corrections are responsible for the bad fits to Dirac eigenvalue correlators
- They can be minimized by a suitable choice of lattice geometry
- LECs from JLQCD lattice configurations:

$$\begin{split} \Sigma^{\text{NNLO}} &= (221(6) \text{ MeV})^3 \,, \\ F^{\text{NNLO}} &= 80(5) \text{ MeV} \,, \\ F^{\text{meson}} &= 87(6) \text{ MeV} \,. \end{split}$$

Outlook (in preparation):

- Calculation of spectral density in epsilon expansion beyond RMT
- A more precise statement of the Thouless energy

Backup slides

Finite-volume corrections to Σ and F

	(a_1)	(a _{3/2})	(<i>a</i> ₂)	(<i>a</i> ₃)	(a ₄)
$\Sigma_{\rm eff}^{\rm NLO}/\Sigma$	1.3455	1.2477	1.1454	0.9404	0.7355
$\Sigma_{\rm eff}^{ m NNLO}/\Sigma$	1.39(1)	1.288(7)	1.202(5)	1.047(3)	0.906(3)
$F_{\rm eff}^{\rm NLO}/F$	1.3004	1.3182	1.3192	1.3193	1.3193
$F_{\rm eff}^{ m NNLO}/F$	1.279(9)	1.305(4)	1.306(2)	1.292(1)	1.261(2)
		(b _{3/2})	(<i>b</i> ₂)	(<i>b</i> ₃)	(<i>b</i> ₄)
$F_{\rm eff}^{\rm NLO}/F$		1.1894	1.06816	0.7710	0.2186
$F_{\rm eff}^{\rm NNLO}/F$		1.182(8)	1.092(7)	0.959(6)	0.919(5)

Same setup, detailed numbers at NLO and NNLO:

Convergence of ε expansion for JLQCD setup is OK