Al =3/2, K — nw Decayswith a
Nearly Physical Pion Mass

Matthew Lightman and Elaine Goode for the RBC and UKQCD Collaborations

Presented at The XXVIII International Symposium on Lattice Field Theory, Villasimius,

Sardinia, Italy

—



| | ntroduction

# Calculations of K — 7w decays could help to solve the
puzzle of the Al = 1/2 rule.

# Can put constraints on CKM matrix elements, including
the CP violating phase and €' /¢, when lattice
calculations are compared with experimental results.
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#® Chiral extrapolations from unphysical masses are
problematic (Christ and Li, Lattice 2008), so we
attempt a calculation with very close to physical
masses and kinematics.

#® Use RBC/UKQCD 32° x 64, L, = 32 lattices with 2+1
flavors of domain wall fermions (DWF), and strong
coupling (¢~ ! = 1.4 GeV). lwasaki + DSDR gauge
action.

# Valence pion mass m, = 145.6(5) MeV (unitary pion

mass m, ~ 180 MeV). Physics mostly determined by
valence mass. |



| Effective Hamiltonian

®» The weak interactions are included in an effective Hamiltonian

G 10
Has—1 = 71; Vi ;[zi(u) + 7y ()] Q;

where z; (1), y: (1) are Wilson coefficients, 7 = —V;qVi% /Vaua Vi, and Q;
are four quark operators. (Buchalla et. al. Rev. Mod. Phys. 68, (1996),
1125)

® Operators can be classified by their SU(3)r x SU(3)r transformation
properties, and by isospin.

® More difficult AI = 1/2 channel discussed in talk by Qi Liu. This talk:
Al = 3/2 channel.

® Q1,0Q2,Q9,Q10 — (27,1) operator

® (-, — (8,8) operator, Qs — (8,8) mixed operator |



I Twisted Boundary Conditions

® To give the pions momentum without having to fit excited states,
we use twisted boundary conditions (Kim and Christ, Lattice 2002,
hep-lat/0210003; Sachrajda and Villadoro hep-lat/0411033).

® |n particular, antiperiodic boundary conditions in two of the spatial
directions so that pions have equal and opposite momentum of
magnitude p, = @

® Twist the d quark only so that pions have momentum, but kaon
doesn’t (can calculate K — n*x ™ and relate to physical decays
using Wigner-Eckhart theorem).
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| Details of the Calculation

® A similar calculation was performed by Changhoan Kim on 16° x 32
guenched lattices (Changhoan Kim, Doctoral Thesis).

® On the lattice, must calculate matrix elements
M = (r7|Q|K)

where @ is a four quark operator.
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AI = 3/2 quark flow diagram




| Details of the Calculation

® 47 configurations of RBC/UKQCD 323 x 64, L, = 32 lattices,
with Domain Wall Fermions and 2+1 dynamical quark
flavors, using the DSDR action, generated on BG/P at ANL
(talk by Bob Mawhinney).

® Inverse lattice spacing a—! = 1.4 GeV, box of side length
L = 4.51 fm.

® Set quark masses m¥¥ = 0.049, m3¢* = 0.045,
m? = 0.0001, m** = 0.001 (some partial quenching).
Partially quenched and unitary pion less different than
Indicated by m; because m,., = 0.0018. — Valence pion

mass m, = 145.6(5) MeV. |



| Details of the Calculation

® Coulomb gauge fixed wall sources for untwisted quark
propagators.

® Coulomb gauge fixed “cosine” source for twisted d quark
propagators.

Sp.cosine (X) = c0s(py) cos(pyy) cos(ps2)

® Requires fewer inversions than pure momentum sources

e'PX and e PX,

» Non-zero total momentum terms don’t contribute due to zero
total momentum sink. |



| Details of the Calculation

® \We add and subtract quark propagators with periodic and
antiperiodic boundary conditions in the time direction from
each other to double the effective time length.

® Two pion source at ¢, = 0, kaon source at ¢ = 20, 24, 28, 32.
Time location ¢ of four quark operator is varied.
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| Pion Effective M ass

Fit: m,=0.10400(37) — 145.6(5) MeV
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| Kaon Effective M ass

Fit: mx=0.3706(13) — 519(2) MeV
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| Two Pion Effective Mass (p,, ~ 0)

Fit: ££,,=0.2100(10) — 294(1) MeV
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| TwoPion Effective Mass (p, ~ V2m)

Fit: £,,=0.3687(61) — 516(9) MeV
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| (27,1) Operator Effective Mass

From previous fits: mess = Err — mi=-0.0019(59) — -2.7(8.3) MeV
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| (8,8) Operator Effective M ass

From previous fits: mess = Err — mi=-0.0019(59) — -2.7(8.3) MeV
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I (8,8) Mixed Op. Effective Mass

From previous fits: mess = Err — mi=-0.0019(59) — -2.7(8.3) MeV
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I Preliminary Results- Summary

Quantity This Calculation | Physical
M 145.6(5) MeV | 139.6 MeV
M 519(2) MeV | 493.7 MeV
Err(pr = 0) 294(1) MeV
Err(pr ~ V21 /L) 516(9) MeV | 493.7 MeV
Ern(pr = V21/L) —mg | -2.7(8.3) MeV 0 MeV
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| Two Pion.Phase Shift

® Two pion S-wave phase shift can be found from energy via Luscher
relation (Luscher, M., Nucl. Phys. B, 354, p. 531-578)

<L
nm — 6(px) = ¢(qx), Or = p% (1)
where
3/2
tanla) =~z i @)
Zoo(s;q°%) \/EZH —q°)7° (3)

(the components of n are integers or half integers depending on whether
or not that direction is twisted)

® p,. determined exactly from two pion energy via dispersion relation

Eorr :2Vm2r+p72r (4)



Two Pion.Phase Shift
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Dervative of Phase Shift

» Will need g—g evaluated at pion momentum for normalization of matrix
element.

® Use phenomenological curve (A. Schenk, Nucl. Phys. B 363 (1991) 97)
shown on previous slide

2 2 4 6 2 I=2
tan§ =y = \/1 _ (A+Bp— +C2 4 Dp—> (4m7f 51=0 )

s m2 mi mo s — 8122

(5)
with values of constants fit from experiment.

$ With p,=213 MeV, get

@ = —0.305 (6)
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I Decay Amplitude A,

® ook at quantity A, which can be compared to experiment.
(m(I = 2)|Lw (0)| K) = Aze™ (7)

® Related to lattice matrix element by

V3 1 8(/5 3/2 —3
Ay = L/ GrViaVius/ T For
’ 22 Tqx \| Oqx 8% Fhud

X ZC 1) {(mm|Q; 1K) (8)

® ,; is operator renormalization (NPR)

B All terms purely real except for Wilson coefficients C;(u) = zi () + 7yi ().
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| L ellouch-L uscher Factor

® |ellouch-Luscher factor (hep-lat/0003023v1) is a finite volume correction
to the matrix element that takes 7= interactions into account.

® Proportional to

[9J0) 00
LL factor o \/ 34 -+ 94, 9)

$ ° from phenomenological curve as before.

9¢ | 5.141(64)

Oqr

99 -0.305

Oqr

® For systematic error, compare to LL factor with % obtained by drawing a
straight line between the two phase shift data points from this calculation.

Get a 2% difference.



| Real Part of A, (Preliminary)

® Final result is an error-weighted average over separations between the
kaon and two pions tx = 20, 24, 28, 32

® Note: NPR performed on L, = 16 rather than L; = 32. (See previous talk
by Nicholas Garron).

Re(4,) (1078 GeV)
tx = 20 1.52(12)
tx = 24 1.52(10)
tx = 28 1.71(13)
tk = 32 1.35(22)
Error Weighted Average 1.555(73)
Experimental 1.5

—



I |maginary Part of A, (Preliminary)

® NOTE: NPR note yet done, approximate Z;; = 0.9Z§5¢j for (8,8) and (8,8)
mixed operator. NPR to be done soon!

Im(Az) (10~ GeV)
tx =20 -9.20(50)
tx =24 -10.03(70)
tr =28 -9.51(73)
tx = 32 -10.10(84)
Error Weighted Average -9.58(44)
RBC Quenched 16> yPT -12.64(72)
Dynamical 24° YPT (Shu Li) -7.9(16)(39)

® Im(Ay)/Re(As) = —6.16(29) x 10~° from error weighted averages.

B



Systematic Error Budget

Finite lattice spacing 5% x 3=15%
(Scaling from Iwasaki to (just 5%
DSDR action, 323) for Im(A2)/Re(A>))
Finite volume (Note m L=3.3) 4%

(Comparison of fr, fi
on 163 and 243 lattices)
mual o£ msea 204

(Effect of partial quenching on
323 Iwasaki, Lightman Lattice 2008)
Derivative of Phase Shift 2%




Systematic Error Budget

Masses not exactly physical T.B.D.
(Study of mass dependence on
243 quenched)

Operator Renormalization T.B.D.
(20% for Im(A2) due
to guess for Z; ;)

Wilson Coefficients T.B.D.
Total 16% Re(A2)
(Added in quadrature) 25% Im(A2)

21% |m(A2)/Re(A2)




| Conclusion

® Preliminary results for Al = 3/2 K — =nw decay amplitude
on 3273 lattices with 2+1 flavors of dynamical domain wall
fermions and the lwasaki + DSDR gauge action.

m, =145.6(5) MeV, my =519(2) MeV, E,. =516(9) MeV.
Re(A2)=1.56(07)stat(25)sys x 1075 GeV
IM(A42)=—9.6(0.4) 514¢(2-4) sys X 10713 GeV

Im(As)/Re(A2)=—6.2(0.3)stat(1.3)sys x 107> GeV

© o o o o

NPR for (8,8) operators will be done soon, reducing
systematic error in Im(As) and Im(A5)/Re(As) to same as for

Re(As). |
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