$\Delta I=3 / 2, K \rightarrow \pi \pi$ Decays with a Nearly Physical Pion Mass

Matthew Lightman and Elaine Goode for the RBC and UKQCD Collaborations

Presented at The XXVIII International Symposium on Lattice Field Theory, Villasimius, Sardinia, Italy

Introduction

- Calculations of $K \rightarrow \pi \pi$ decays could help to solve the puzzle of the $\Delta I=1 / 2$ rule.
- Can put constraints on CKM matrix elements, including the CP violating phase and $\epsilon^{\prime} / \epsilon$, when lattice calculations are compared with experimental results.

Introduction

- Chiral extrapolations from unphysical masses are problematic (Christ and Li, Lattice 2008), so we attempt a calculation with very close to physical masses and kinematics.
- Use RBC/UKQCD $32^{3} \times 64, L_{s}=32$ lattices with $2+1$ flavors of domain wall fermions (DWF), and strong coupling ($a^{-1}=1.4 \mathrm{GeV}$). Iwasaki + DSDR gauge action.
- Valence pion mass $m_{\pi}=145.6$ (5) MeV (unitary pion mass $m_{\pi} \approx 180 \mathrm{MeV}$). Physics mostly determined by valence mass.

Effective Hamiltonian

- The weak interactions are included in an effective Hamiltonian

$$
\mathcal{H}_{\Delta S=1}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*} \sum_{i=1}^{10}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right] Q_{i}
$$

where $z_{i}(\mu), y_{i}(\mu)$ are Wilson coefficients, $\tau=-V_{t d} V_{t s}^{*} / V_{u d} V_{u s}^{*}$, and Q_{i} are four quark operators. (Buchalla et. al. Rev. Mod. Phys. 68, (1996), 1125)

- Operators can be classified by their $S U(3)_{L} \times S U(3)_{R}$ transformation properties, and by isospin.
- More difficult $\Delta I=1 / 2$ channel discussed in talk by Qi Liu. This talk: $\Delta I=3 / 2$ channel.
- $Q_{1}, Q_{2}, Q_{9}, Q_{10} \rightarrow(27,1)$ operator
- $Q_{7} \rightarrow(8,8)$ operator, $Q_{8} \rightarrow(8,8)$ mixed operator

Twisted Boundary Conditions

- To give the pions momentum without having to fit excited states, we use twisted boundary conditions (Kim and Christ, Lattice 2002, hep-lat/0210003; Sachrajda and Villadoro hep-lat/0411033).
- In particular, antiperiodic boundary conditions in two of the spatial directions so that pions have equal and opposite momentum of magnitude $p_{\pi}=\frac{\sqrt{2} \pi}{L}$.
- Twist the d quark only so that pions have momentum, but kaon doesn't (can calculate $K^{+} \rightarrow \pi^{+} \pi^{+}$and relate to physical decays using Wigner-Eckhart theorem).

Details of the Calculation

- A similar calculation was performed by Changhoan Kim on $16^{3} \times 32$ quenched lattices (Changhoan Kim, Doctoral Thesis).
- On the lattice, must calculate matrix elements

$$
\mathcal{M}=\langle\pi \pi| Q|K\rangle
$$

where Q is a four quark operator.

Details of the Calculation

- 47 configurations of RBC/UKQCD $32^{3} \times 64, L_{s}=32$ lattices, with Domain Wall Fermions and 2+1 dynamical quark flavors, using the DSDR action, generated on BG/P at ANL (talk by Bob Mawhinney).
- Inverse lattice spacing $a^{-1}=1.4 \mathrm{GeV}$, box of side length $L=4.51 \mathrm{fm}$.
- Set quark masses $m_{s}^{v a l}=0.049, m_{s}^{\text {sea }}=0.045$, $m_{l}^{v a l}=0.0001, m_{l}^{\text {sea }}=0.001$ (some partial quenching). Partially quenched and unitary pion less different than indicated by m_{l} because $m_{\text {res }}=0.0018 . \rightarrow$ Valence pion mass $m_{\pi}=145.6(5) \mathrm{MeV}$.

Details of the Calculation

- Coulomb gauge fixed wall sources for untwisted quark propagators.
- Coulomb gauge fixed "cosine" source for twisted d quark propagators.

$$
s_{\mathbf{p}, \text { cosine }}(\mathbf{x})=\cos \left(p_{x} x\right) \cos \left(p_{y} y\right) \cos \left(p_{z} z\right)
$$

- Requires fewer inversions than pure momentum sources $e^{i \mathbf{p} \cdot \mathbf{x}}$ and $e^{-i \mathbf{p} \cdot \mathbf{x}}$.
- Non-zero total momentum terms don't contribute due to zero total momentum sink.

Details of the Calculation

- We add and subtract quark propagators with periodic and antiperiodic boundary conditions in the time direction from each other to double the effective time length.
- Two pion source at $t_{\pi}=0$, kaon source at $t_{K}=20,24,28,32$. Time location t of four quark operator is varied.

Pion Effective Mass

Fit: $m_{\pi}=0.10400(37) \rightarrow 145.6(5) \mathrm{MeV}$

Kaon Effective Mass

Fit: $m_{K}=0.3706(13) \rightarrow 519(2) \mathrm{MeV}$

Two Pion Effective Mass $\left(p_{\pi} \approx 0\right)$

Fit: $E_{\pi \pi}=0.2100(10) \rightarrow 294(1) \mathrm{MeV}$

Two Pion Effective Mass $\left(p_{\pi} \approx \frac{\sqrt{2} \pi}{L}\right)$

Fit: $E_{\pi \pi}=0.3687(61) \rightarrow 516(9) \mathrm{MeV}$

$(27,1)$ Operator Effective Mass

From previous fits: $m_{e f f}=E_{\pi \pi}-m_{K}=-0.0019(59) \rightarrow-2.7(8.3) \mathrm{MeV}$

$(8,8)$ Operator Effective Mass

From previous fits: $m_{e f f}=E_{\pi \pi}-m_{K}=-0.0019(59) \rightarrow-2.7(8.3) \mathrm{MeV}$

$(8,8)$ Mixed Op. Effective Mass

From previous fits: $m_{e f f}=E_{\pi \pi}-m_{K}=-0.0019(59) \rightarrow-2.7(8.3) \mathrm{MeV}$

Preliminary Results - Summary

Quantity	This Calculation	Physical
m_{π}	$145.6(5) \mathrm{MeV}$	139.6 MeV
m_{K}	$519(2) \mathrm{MeV}$	493.7 MeV
$E_{\pi \pi}\left(p_{\pi} \approx 0\right)$	$294(1) \mathrm{MeV}$	-
$E_{\pi \pi}\left(p_{\pi} \approx \sqrt{2} \pi / L\right)$	$516(9) \mathrm{MeV}$	493.7 MeV
$E_{\pi \pi}\left(p_{\pi} \approx \sqrt{2} \pi / L\right)-m_{K}$	$-2.7(8.3) \mathrm{MeV}$	0 MeV

Two Pion Phase Shift

- Two pion S-wave phase shift can be found from energy via Luscher relation (Luscher, M., Nucl. Phys. B, 354, p. 531-578)

$$
\begin{equation*}
n \pi-\delta\left(p_{\pi}\right)=\phi\left(q_{\pi}\right), \quad q_{\pi}=\frac{p_{\pi} L}{2 \pi} \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
\tan \phi(q)=-\frac{\pi^{3 / 2} q}{\mathcal{Z}_{00}\left(1, q^{2}\right)} \tag{2}\\
\mathcal{Z}_{00}\left(s ; q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{\mathbf{n}}\left(\mathbf{n}^{2}-q^{2}\right)^{-s} \tag{3}
\end{gather*}
$$

(the components of \mathbf{n} are integers or half integers depending on whether or not that direction is twisted)

- p_{π} determined exactly from two pion energy via dispersion relation

$$
\begin{equation*}
E_{\pi \pi}=2 \sqrt{m_{\pi}^{2}+p_{\pi}^{2}} \tag{4}
\end{equation*}
$$

Two Pion Phase Shift

p_{π} (Exact)	δ
$20(3) \mathrm{MeV}$	$-0.44(17)$ degrees
$213(5) \mathrm{MeV}$	$-19.6(5.6)$ degrees

Derivative of Phase Shift

- Will need $\frac{\partial \delta}{\partial q}$ evaluated at pion momentum for normalization of matrix element.
- Use phenomenological curve (A. Schenk, Nucl. Phys. B 363 (1991) 97) shown on previous slide

$$
\begin{equation*}
\tan \delta_{l=0}^{I=2}=\sqrt{1-\frac{4 m_{\pi}^{2}}{s}}\left(A+B \frac{p^{2}}{m_{\pi}^{2}}+C \frac{p^{4}}{m_{\pi}^{4}}+D \frac{p^{6}}{m_{\pi}^{6}}\right)\left(\frac{4 m_{\pi}^{2}-s_{l=0}^{I=2}}{s-s_{l=0}^{I=2}}\right) \tag{5}
\end{equation*}
$$

with values of constants fit from experiment.

- With $p_{\pi}=213 \mathrm{MeV}$, get

$$
\begin{equation*}
\frac{\partial \delta}{\partial q}=-0.305 \tag{6}
\end{equation*}
$$

Decay Amplitude A_{2}

- Look at quantity A_{2} which can be compared to experiment.

$$
\begin{equation*}
\langle\pi \pi(I=2)| \mathcal{L}_{W}(0)|K\rangle=A_{2} e^{i \delta_{2}} \tag{7}
\end{equation*}
$$

- Related to lattice matrix element by

$$
\begin{align*}
A_{2}=\frac{\sqrt{3}}{2 \sqrt{2}} & \frac{1}{\pi q_{\pi}} \sqrt{\frac{\partial \phi}{\partial q_{\pi}}+\frac{\partial \delta}{\partial q_{\pi}}} L^{3 / 2} a^{-3} G_{F} V_{u d} V_{u s} \sqrt{m_{K}} E_{\pi \pi} \\
& \times \sum_{i, j} C_{i}(\mu) Z_{i j}(\mu)\langle\pi \pi| Q_{j}|K\rangle \tag{8}
\end{align*}
$$

- $Z_{i j}$ is operator renormalization (NPR)
- All terms purely real except for Wilson coefficients $C_{i}(\mu)=z_{i}(\mu)+\tau y_{i}(\mu)$.

Lellouch-Luscher Factor

- Lellouch-Luscher factor (hep-lat/0003023v1) is a finite volume correction to the matrix element that takes $\pi \pi$ interactions into account.
- Proportional to

$$
\begin{equation*}
\mathrm{LL} \text { factor } \propto \sqrt{\frac{\partial \phi}{\partial q_{\pi}}+\frac{\partial \delta}{\partial q_{\pi}}} \tag{9}
\end{equation*}
$$

- $\frac{\partial \delta}{\partial q_{\pi}}$ from phenomenological curve as before.

$$
\begin{array}{|c|c|}
\hline \frac{\partial \phi}{\partial q_{\pi}} & 5.141(64) \\
\frac{\partial \delta}{\partial q_{\pi}} & -0.305 \\
\hline
\end{array}
$$

- For systematic error, compare to LL factor with $\frac{\partial \delta}{\partial q_{\pi}}$ obtained by drawing a straight line between the two phase shift data points from this calculation. Get a 2% difference.

Real Part of A_{2} (Preliminary)

- Final result is an error-weighted average over separations between the kaon and two pions $t_{K}=20,24,28,32$
- Note: NPR performed on $L_{s}=16$ rather than $L_{s}=32$. (See previous talk by Nicholas Garron).

	$\operatorname{Re}\left(A_{2}\right)\left(10^{-8} \mathrm{GeV}\right)$
$t_{K}=20$	$1.52(12)$
$t_{K}=24$	$1.52(10)$
$t_{K}=28$	$1.71(13)$
$t_{K}=32$	$1.35(22)$
Error Weighted Average	$1.555(73)$
Experimental	1.5

Imaginary Part of A_{2} (Preliminary)

- NOTE: NPR note yet done, approximate $Z_{i j}=0.9 Z_{q}^{2} \delta_{i j}$ for $(8,8)$ and $(8,8)$ mixed operator. NPR to be done soon!

	$\operatorname{Im}\left(A_{2}\right)\left(10^{-13} \mathrm{GeV}\right)$
$t_{K}=20$	$-9.20(50)$
$t_{K}=24$	$-10.03(70)$
$t_{K}=28$	$-9.51(73)$
$t_{K}=32$	$-10.10(84)$
Error Weighted Average	$-9.58(44)$
RBC Quenched $16^{3} \chi \mathrm{PT}$	$-12.64(72)$
Dynamical $24^{3} \chi \mathrm{PT}($ Shu Li)	$-7.9(16)(39)$

- $\operatorname{Im}\left(A_{2}\right) / \operatorname{Re}\left(A_{2}\right)=-6.16(29) \times 10^{-5}$ from error weighted averages.

Systematic Error Budget

Finite lattice spacing (Scaling from Iwasaki to DSDR action, 32^{3})	$5 \% \times 3=15 \%$ (just 5\% for $\left.\operatorname{Im}\left(A_{2}\right) / \operatorname{Re}\left(A_{2}\right)\right)$
Finite volume (Note $m_{\pi} L=3.3$) (Comparison of f_{π}, f_{K} on 16^{3} and 24^{3} lattices)	4%
$m_{\pi}^{v a l} \neq m_{\pi}^{\text {sea }}$	
(Effect of partial quenching on 32^{3} Iwasaki, Lightman Lattice 2008)	
Derivative of Phase Shift	2%

Systematic Error Budget

Masses not exactly physical (Study of mass dependence on 24^{3} quenched)	T.B.D.
Operator Renormalization	T.B.D. $\left(20 \%\right.$ for $\operatorname{Im}\left(A_{2}\right)$ due to guess for $\left.Z_{i j}\right)$
Wilson Coefficients	T.B.D.
Total	$16 \% \operatorname{Re}\left(A_{2}\right)$
(Added in quadrature)	$25 \% \operatorname{Im}\left(A_{2}\right)$
	$21 \% \operatorname{Im}\left(A_{2}\right) / \operatorname{Re}\left(A_{2}\right)$

Conclusion

- Preliminary results for $\Delta I=3 / 2 K \rightarrow \pi \pi$ decay amplitude on 32^{3} lattices with 2+1 flavors of dynamical domain wall fermions and the Iwasaki + DSDR gauge action .
- $m_{\pi}=145.6(5) \mathrm{MeV}, m_{K}=519(2) \mathrm{MeV}, E_{\pi \pi}=516(9) \mathrm{MeV}$.
- $\operatorname{Re}\left(A_{2}\right)=1.56(07)_{s t a t}(25)_{s y s} \times 10^{-8} \mathrm{GeV}$
- $\operatorname{Im}\left(A_{2}\right)=-9.6(0.4)_{\text {stat }}(2.4)_{\text {sys }} \times 10^{-13} \mathrm{GeV}$
- $\operatorname{Im}\left(A_{2}\right) / \operatorname{Re}\left(A_{2}\right)=-6.2(0.3)_{\text {stat }}(1.3)_{\text {sys }} \times 10^{-5} \mathrm{GeV}$
- NPR for $(8,8)$ operators will be done soon, reducing systematic error in $\operatorname{Im}\left(A_{2}\right)$ and $\operatorname{Im}\left(A_{2}\right) / \operatorname{Re}\left(A_{2}\right)$ to same as for $\operatorname{Re}\left(A_{2}\right)$.

