

$\Delta I = 3/2, K \rightarrow \pi \pi$ Decays with a Nearly Physical Pion Mass

Matthew Lightman and Elaine Goode for the RBC and UKQCD Collaborations

Presented at The XXVIII International Symposium on Lattice Field Theory, Villasimius, Sardinia, Italy

 $\Delta I\,=\,3\,/\,2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.1/2

- Calculations of $K \to \pi \pi$ decays could help to solve the puzzle of the $\Delta I = 1/2$ rule.
- Can put constraints on CKM matrix elements, including the CP violating phase and ϵ'/ϵ , when lattice calculations are compared with experimental results.

Introduction

- Chiral extrapolations from unphysical masses are problematic (Christ and Li, Lattice 2008), so we attempt a calculation with very close to physical masses and kinematics.
- Use RBC/UKQCD $32^3 \times 64$, $L_s = 32$ lattices with 2+1 flavors of domain wall fermions (DWF), and strong coupling ($a^{-1} = 1.4$ GeV). Iwasaki + DSDR gauge action.
- Valence pion mass $m_{\pi} = 145.6(5)$ MeV (unitary pion mass $m_{\pi} \approx 180$ MeV). Physics mostly determined by valence mass.

Effective Hamiltonian

The weak interactions are included in an effective Hamiltonian

$$\mathcal{H}_{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_{i=1}^{10} [z_i(\mu) + \tau y_i(\mu)] Q_i$$

where $z_i(\mu)$, $y_i(\mu)$ are Wilson coefficients, $\tau = -V_{td}V_{ts}^*/V_{ud}V_{us}^*$, and Q_i are four quark operators. (Buchalla et. al. Rev. Mod. Phys. 68, (1996), 1125)

- Operators can be classified by their $SU(3)_L \times SU(3)_R$ transformation properties, and by isospin.
- More difficult $\Delta I = 1/2$ channel discussed in talk by Qi Liu. This talk: $\Delta I = 3/2$ channel.
- $Q_1, Q_2, Q_9, Q_{10} \rightarrow$ (27,1) operator
- $Q_7 \rightarrow$ (8,8) operator, $Q_8 \rightarrow$ (8,8) mixed operator

Twisted Boundary Conditions

- To give the pions momentum without having to fit excited states, we use *twisted boundary conditions* (Kim and Christ, Lattice 2002, hep-lat/0210003; Sachrajda and Villadoro hep-lat/0411033).
- In particular, antiperiodic boundary conditions in two of the spatial directions so that pions have equal and opposite momentum of magnitude p_π = $\frac{\sqrt{2}\pi}{L}$.
- Twist the *d* quark only so that pions have momentum, but kaon doesn't (can calculate $K^+ \rightarrow \pi^+\pi^+$ and relate to physical decays using Wigner-Eckhart theorem).

 $\Delta I\,=\,3\,/\,2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.5/2

- A similar calculation was performed by Changhoan Kim on $16^3 \times 32$ quenched lattices (Changhoan Kim, Doctoral Thesis).
- On the lattice, must calculate matrix elements

 $\mathcal{M} = \langle \pi \pi | Q | K \rangle$

where Q is a four quark operator.

- 47 configurations of RBC/UKQCD 32³ × 64, L_s = 32 lattices, with Domain Wall Fermions and 2+1 dynamical quark flavors, using the DSDR action, generated on BG/P at ANL (talk by Bob Mawhinney).
- Inverse lattice spacing $a^{-1} = 1.4$ GeV, box of side length L = 4.51 fm.
- Set quark masses $m_s^{val} = 0.049$, $m_s^{sea} = 0.045$, $m_l^{val} = 0.0001$, $m_l^{sea} = 0.001$ (some partial quenching). Partially quenched and unitary pion less different than indicated by m_l because $m_{res} = 0.0018$. \rightarrow Valence pion mass $m_{\pi} = 145.6(5)$ MeV.

- Coulomb gauge fixed wall sources for untwisted quark propagators.
- Coulomb gauge fixed "cosine" source for twisted d quark propagators.

 $s_{\mathbf{p},cosine}(\mathbf{x}) = \cos(p_x x)\cos(p_y y)\cos(p_z z)$

- Requires fewer inversions than pure momentum sources $e^{i\mathbf{p}\cdot\mathbf{x}}$ and $e^{-i\mathbf{p}\cdot\mathbf{x}}$.
- Non-zero total momentum terms don't contribute due to zero total momentum sink.

- We add and subtract quark propagators with periodic and antiperiodic boundary conditions in the *time* direction from each other to double the effective time length.
- Two pion source at $t_{\pi} = 0$, kaon source at $t_{K} = 20, 24, 28, 32$.
 Time location *t* of four quark operator is varied.

 $[\]Delta I\,=\,3/2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.9/2

 $\Delta I\,=\,3/2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.10/2

 $\Delta I\,=\,3/2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.11/2

Two Pion Effective Mass ($p_{\pi} \approx 0$ **)**

 $[\]Delta I\,=\,3/2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.12/2

Two Pion Effective Mass ($p_{\pi} \approx \Delta$

(27,1) Operator Effective Mass

From previous fits: $m_{eff} = E_{\pi\pi} - m_K$ =-0.0019(59) \rightarrow -2.7(8.3) MeV

 $\Delta I\,=\,3/2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.14/2

(8,8) Operator Effective Mass

From previous fits: $m_{eff} = E_{\pi\pi} - m_K$ =-0.0019(59) \rightarrow -2.7(8.3) MeV

 $\Delta I\,=\,3/2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.15/2

(8,8) Mixed Op. Effective Mass

From previous fits: $m_{eff} = E_{\pi\pi} - m_K$ =-0.0019(59) \rightarrow -2.7(8.3) MeV

 $\Delta I\,=\,3/2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.16/2

Preliminary Results - Summary

Quantity	This Calculation	Physical
m_{π}	145.6(5) MeV	139.6 MeV
m_K	519(2) MeV	493.7 MeV
$E_{\pi\pi}(p_{\pi} \approx 0)$	294(1) MeV	-
$E_{\pi\pi}(p_{\pi} \approx \sqrt{2}\pi/L)$	516(9) MeV	493.7 MeV
$E_{\pi\pi}(p_{\pi}\approx\sqrt{2}\pi/L)-m_K$	-2.7(8.3) MeV	0 MeV

Two Pion Phase Shift

Two pion S-wave phase shift can be found from energy via Luscher relation (Luscher, M., Nucl. Phys. B, 354, p. 531-578)

$$n\pi - \delta(p_{\pi}) = \phi(q_{\pi}), \qquad q_{\pi} = \frac{p_{\pi}L}{2\pi}$$
(1)

where

$$\tan\phi(q) = -\frac{\pi^{3/2}q}{\mathcal{Z}_{00}(1,q^2)}$$
(2)

$$\mathcal{Z}_{00}(s;q^2) = \frac{1}{\sqrt{4\pi}} \sum_{\mathbf{n}} (\mathbf{n}^2 - q^2)^{-s}$$
(3)

(the components of n are integers or half integers depending on whether or not that direction is twisted)

 \mathbf{P}_{π} determined exactly from two pion energy via dispersion relation

$$E_{\pi\pi} = 2\sqrt{m_{\pi}^2 + p_{\pi}^2}$$
 (4)

 $[\]Delta I\,=\,3/2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.18/2

Two Pion Phase Shift

 $[\]Delta I\,=\,3/2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.19/2

Derivative of Phase Shift

- Will need $\frac{\partial \delta}{\partial q}$ evaluated at pion momentum for normalization of matrix element.
- Use phenomenological curve (A. Schenk, Nucl. Phys. B 363 (1991) 97) shown on previous slide

$$\tan \delta_{l=0}^{I=2} = \sqrt{1 - \frac{4m_{\pi}^2}{s}} \left(A + B \frac{p^2}{m_{\pi}^2} + C \frac{p^4}{m_{\pi}^4} + D \frac{p^6}{m_{\pi}^6} \right) \left(\frac{4m_{\pi}^2 - s_{l=0}^{I=2}}{s - s_{l=0}^{I=2}} \right)$$
(5)

with values of constants fit from experiment.

• With p_{π} =213 MeV, get

$$\frac{\partial \delta}{\partial q} = -0.305 \tag{6}$$

 $[\]Delta I\,=\,3/2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.20/2

Decay Amplitude A₂

Look at quantity A_2 which can be compared to experiment.

$$\langle \pi \pi (I=2) | \mathcal{L}_W(0) | K \rangle = A_2 e^{i\delta_2} \tag{7}$$

Related to lattice matrix element by

$$A_{2} = \frac{\sqrt{3}}{2\sqrt{2}} \frac{1}{\pi q_{\pi}} \sqrt{\frac{\partial \phi}{\partial q_{\pi}} + \frac{\partial \delta}{\partial q_{\pi}}} L^{3/2} a^{-3} G_{F} V_{ud} V_{us} \sqrt{m_{K}} E_{\pi\pi}$$
$$\times \sum_{i,j} \frac{C_{i}(\mu) Z_{ij}(\mu)}{\langle \pi \pi | Q_{j} | K \rangle}$$
(8)

\square Z_{ij} is operator renormalization (NPR)

All terms purely real except for Wilson coefficients $C_i(\mu) = z_i(\mu) + \tau y_i(\mu)$.

 $[\]Delta I\,=\,3/2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.21/2

Lellouch-Luscher Factor

- Lellouch-Luscher factor (hep-lat/0003023v1) is a finite volume correction to the matrix element that takes $\pi\pi$ interactions into account.
- Proportional to

LL factor
$$\propto \sqrt{\frac{\partial \phi}{\partial q_{\pi}} + \frac{\partial \delta}{\partial q_{\pi}}}$$
 (9)

 $\int \frac{\partial \delta}{\partial q_{\pi}}$ from phenomenological curve as before.

$rac{\partial \phi}{\partial q_\pi}$	5.141(64)
$rac{\partial \delta}{\partial q_\pi}$	-0.305

Real Part of A_2 (Preliminary)

- Final result is an error-weighted average over separations between the kaon and two pions $t_K = 20, 24, 28, 32$
- Note: NPR performed on $L_s = 16$ rather than $L_s = 32$. (See previous talk by Nicholas Garron).

	$Re(A_2)$ (10 ⁻⁸ GeV)
$t_K = 20$	1.52(12)
$t_K = 24$	1.52(10)
$t_K = 28$	1.71(13)
$t_K = 32$	1.35(22)
Error Weighted Average	1.555(73)
Experimental	1.5

Imaginary Part of A_2 (Preliminary)

■ NOTE: NPR note yet done, approximate $Z_{ij} = 0.9Z_q^2 \delta_{ij}$ for (8,8) and (8,8) mixed operator. NPR to be done soon!

	$Im(A_2)$ (10 ⁻¹³ GeV)
$t_{K} = 20$	-9.20(50)
$t_K = 24$	-10.03(70)
$t_K = 28$	-9.51(73)
$t_K = 32$	-10.10(84)
Error Weighted Average	-9.58(44)
RBC Quenched $16^3 \chi$ PT	-12.64(72)
Dynamical $24^3~\chi$ PT (Shu Li)	-7.9(16)(39)

Im $(A_2)/\text{Re}(A_2) = -6.16(29) \times 10^{-5}$ from error weighted averages.

 $[\]Delta I\,=\,3/2,\,K\,
ightarrow\,\pi\,\pi$ Decays with a Nearly Physical Pion Mass – p.24/2

Systematic Error Budget

Finite lattice spacing	5% $ imes$ 3=15%
(Scaling from Iwasaki to	(just 5%
DSDR action, 32^3)	for $Im(A_2)/Re(A_2))$
Finite volume (Note $m_{\pi}L$ =3.3)	4%
(Comparison of f_π , f_K	
on 16^3 and 24^3 lattices)	
$m_\pi^{val} eq m_\pi^{sea}$	2%
(Effect of partial quenching on	
32^3 Iwasaki, Lightman Lattice 2008)	
Derivative of Phase Shift	2%

Systematic Error Budget

Masses not exactly physical	T.B.D.
(Study of mass dependence on	
24^3 quenched)	
Operator Renormalization	T.B.D.
	(20% for $Im(A_2)$ due
	to guess for Z_{ij})
Wilson Coefficients	T.B.D.
Total	16% Re(A ₂)
(Added in guadrature)	$O \Gamma 0 (1 m (4))$
	25% $III(A_2)$

 $\Delta I = 3/2, K
ightarrow \pi \pi$ Decays with a Nearly Physical Pion Mass – p.26/2

Conclusion

- Preliminary results for $\Delta I = 3/2 \ K \rightarrow \pi \pi$ decay amplitude on 32^3 lattices with 2+1 flavors of dynamical domain wall fermions and the Iwasaki + DSDR gauge action.
- $m_{\pi} = 145.6(5)$ MeV, $m_K = 519(2)$ MeV, $E_{\pi\pi} = 516(9)$ MeV.
- $\operatorname{Re}(A_2)=1.56(07)_{stat}(25)_{sys} \times 10^{-8} \text{ GeV}$
- $Im(A_2)=-9.6(0.4)_{stat}(2.4)_{sys} \times 10^{-13} \text{ GeV}$
- $Im(A_2)/Re(A_2)=-6.2(0.3)_{stat}(1.3)_{sys} \times 10^{-5} \text{ GeV}$
- NPR for (8,8) operators will be done soon, reducing systematic error in Im(A₂) and Im(A₂)/Re(A₂) to same as for Re(A₂).