Computing the $B^{*} B \pi$ coupling with relativistic heavy quarks and domain wall fermions

Patrick Fritzsch

for the RBC/UKQCD collaboration

School of Physics
and Astronomy

Lattice 2010, Villasimius, Sardinia, Italy, 2010 June 14-19

First of all:

Warning

No preliminary results available yet!

Content

- Motivation
- Overview of RBC/UKQCD heavy quark project and ...
- ... how our calculation fits into it
the relevant form factor on the lattice
- computational strategy

Outlook

Motivation

- phenomenological importance in effective description of hadronic heavy meson decays
- useful tool: heavy meson chiral perturbation theory (HM $\chi \mathrm{PT}$)

$$
\mathcal{L}_{\mathrm{HM} \chi}^{\mathrm{int}}=g \cdot \operatorname{Tr}\left[\bar{H}_{a} H_{b} \mathcal{A}_{\mu}^{a b} \gamma^{\mu} \gamma_{5}\right]
$$

(heavy mesons + low momentum pions)

- isospin symmetry relates various charge combinations

$$
g_{V P \pi} \equiv g_{V^{+} P^{0} \pi^{+}}=-\sqrt{2} g_{V^{+} P^{+} \pi^{0}}=-g_{V^{0} P^{+} \pi^{-}}
$$

- first time that Relativistic Heavy Quarks (RHQ) will be used in the computation
- we need it in chiral extrapolation of $B^{0}-\bar{B}^{0}$-mixing calculation

RBC/UKQCD heavy quark project

- heavy valence quarks with Relativistic Heavy Quark (RHQ) action
- gauge field configurations with $2+1$ light dynamical DWF on $L / a \in\{24,32\}$ lattices, $T / a=64, a^{-1} \in\{2.28,1.73\} \mathrm{GeV}$
- ongoing investigations:
- non-perturbative tuning of RHQ parameters ($a m_{0}, c_{P}, \zeta$) on $L / a=32$
\rightsquigarrow talk by Hao Peng [Parallel 46]
- B-Meson decay constant \& $B_{0}-\bar{B}_{0}$-mixing \rightsquigarrow talk by Oliver Witzel [Parallel 30]
- neutral B-Meson mixing with static quarks
\rightsquigarrow talk by Yasumichi Aoki [Parallel 30]
- we use USQCD software suite CPS, Chroma as well as UKhadron

RBC/UKQCD heavy quark project
heavy valence quarks with Relativistic Heavy Quark (RHQ) action
we use a variant of the Fermilab action [El-Khadra,Kronfeld,Mackenzie], the ...

RHQ action

$$
\begin{aligned}
S & =\sum_{n, n^{\prime}} \bar{\psi}_{n} \mathcal{K}_{n, n^{\prime}} \psi_{n^{\prime}}+\mathrm{O}\left[(a \Lambda)^{2}\right], \\
\mathcal{K} & =m_{0}+\gamma_{0} D_{0}-\frac{a}{2} D_{0}^{2}+\zeta\left[\gamma \mathbf{D}-\frac{a}{2} \mathbf{D}^{2}\right]+\operatorname{ac_{P}} \frac{i}{4} \sigma_{\mu \nu} F_{\mu \nu}
\end{aligned}
$$

claim: accurate to all orders in $\left(a m_{\mathrm{h}}\right)^{n}$
[Christ,Li,Lin]

- 3 parameters: $\left\{a m_{0}, \zeta\left(g_{0}^{2}, a m_{0}\right), c_{P}\left(g_{0}^{2}, a m_{0}\right)\right\}$
- non-perturbative parameter tuning required
- matching to physical spectrum through

$$
m_{\mathrm{av}}=\frac{1}{4}\left(m_{P}+3 m_{V}\right), \quad \Delta m=m_{V}-m_{P}, \quad E^{2}=m^{2}+\mathbf{p}^{2}
$$

(this has to be done for each quark flavour separately)

RBC/UKQCD heavy quark project

gauge field configurations with $2+1$ light dynamical DWF
Iwasaki gauge action, $L_{s} / a=16, a M_{5}=1.8, T / a=64$:
$L / a=24 \quad L \approx 2.75 \mathrm{fm}, a^{-1} \approx 1.732(29) \mathrm{GeV}$
$a m_{l} \in\{0.005,0.01,0.02\}$ or $m_{\pi} \in\{331,419,558\} \mathrm{MeV}$
strange quark fixed at $a m_{s}=0.04$

- RHQ parameters fixed [RBC/UKQCD:PoS-Lattice'07,'08]
$a m_{l} \in\{0.004,0.006,0.008\}$ or $m_{\pi} \in\{307,366,418\} \mathrm{MeV}$ strange quark fixed at $a m_{s}=0.03$
talk by C.Kelly, today 12:30 [Parallel 18]

RBC/UKQCD heavy quark project
gauge field configurations with $2+1$ light dynamical DWF
Iwasaki gauge action, $L_{s} / a=16, a M_{5}=1.8, T / a=64$:
$L / a=24 \quad L \approx 2.75 \mathrm{fm}, a^{-1} \approx 1.732(29) \mathrm{GeV}$
$a m_{l} \in\{0.005,0.01,0.02\}$ or $m_{\pi} \in\{331,419,558\} \mathrm{MeV}$

- strange quark fixed at $a m_{s}=0.04$
- RHQ parameters fixed [RBC/UKQCD:PoS-Lattice'07,'08]

$$
L / a=32 \quad L \approx 2.72 \mathrm{fm}, a^{-1} \approx 2.284(25) \mathrm{GeV}
$$

- $a m_{l} \in\{0.004,0.006,0.008\}$ or $m_{\pi} \in\{307,366,418\} \mathrm{MeV}$
- strange quark fixed at $a m_{s}=0.03$
- RHQ parameters fixed [RBC/UKQCD:PoS-Lattice'09] for charm only yet
\rightsquigarrow talk by C.Kelly, today 12:30 [Parallel 18]

Defining an effective coupling

. . is a matter of convention
our conventions follow [DeDivitiisETAL:JHEP10(1998)010]:

effective coupling

$$
\begin{aligned}
\left\langle P(p) \pi(q) \mid V\left(\lambda, p^{\prime}\right)\right\rangle & =g_{V P \pi}\left(q^{2}\right) \cdot q_{\mu} \epsilon^{\mu}\left(\lambda, p^{\prime}\right) \cdot(2 \pi)^{4} \delta\left(p^{\prime}-p-q\right) \\
\left\langle P(p) \mid P\left(p^{\prime}\right)\right\rangle & =2 p^{0}(2 \pi)^{3} \delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right)
\end{aligned}
$$

- fully relativistic treatment
- heavy-light pseudo-scalar P and vector meson V (in either c-quark or b-quark channel)
- $\epsilon^{\mu}\left(\lambda, p^{\prime}\right)$: polarisation vector of V computational strategy is mainly the standard one, see [AbadaETAL:PhysRevD66:074504:2002] for instance

The relevant matrix element

LSZ reduction formula \& PCAC relation

$$
\begin{aligned}
\left\langle B^{0}(p) \pi^{+}(q) \mid B^{\star+}\left(p^{\prime}\right)\right\rangle & =\mathrm{i}\left(m_{\pi}^{2}-q^{2}\right) \int_{x} \mathrm{e}^{\mathrm{i} q x}\langle\bar{B}(p)| \pi(x)\left|B^{\star}(p+q)\right\rangle \\
& =q^{\mu} \frac{m_{\pi}^{2}-q^{2}}{m_{\pi}^{2} f_{\pi}} \int_{x} \mathrm{e}^{\mathrm{i} q x}\langle\bar{B}(p)| A_{\mu}(x)\left|B^{\star}(p+q)\right\rangle
\end{aligned}
$$

parametrized by three form factors $A_{0,1,2}\left(q^{2}\right)$

The relevant matrix element

LSZ reduction formula \& PCAC relation

$$
\begin{aligned}
\left\langle B^{0}(p) \pi^{+}(q) \mid B^{\star+}\left(p^{\prime}\right)\right\rangle & =\mathrm{i}\left(m_{\pi}^{2}-q^{2}\right) \int_{x} \mathrm{e}^{\mathrm{i} q x}\langle\bar{B}(p)| \pi(x)\left|B^{\star}(p+q)\right\rangle \\
& =q^{\mu} \frac{m_{\pi}^{2}-q^{2}}{m_{\pi}^{2} f_{\pi}} \int_{x} \mathrm{e}^{\mathrm{i} q x}\langle\bar{B}(p)| A_{\mu}(x)\left|B^{\star}(p+q)\right\rangle
\end{aligned}
$$

$\langle P(p)| A_{\mu}\left|V\left(\lambda, p^{\prime}\right)\right\rangle=$

$$
\begin{gathered}
A_{0}\left(q^{2}\right) 2 m_{V} \frac{\epsilon^{\lambda} \cdot q}{q^{2}} q_{\mu}+A_{1}\left(q^{2}\right)\left(m_{V}+m_{P}\right)\left[\epsilon^{\lambda}{ }_{\mu}-\frac{\epsilon^{\lambda} \cdot q}{q^{2}} q_{\mu}\right] \\
+A_{2}\left(q^{2}\right) \frac{\epsilon^{\lambda} \cdot q}{m_{V}+m_{P}}\left[\left(p^{\prime}+p\right)_{\mu}-\frac{m_{V}^{2}-m_{P}^{2}}{q^{2}} q_{\mu}\right]
\end{gathered}
$$

- parametrized by three form factors $A_{0,1,2}\left(q^{2}\right)$
- we will set $\mathbf{p}=0 \Rightarrow q_{0}=E_{V}\left(\mathbf{p}^{\prime}\right)-m_{P}$, with $\mathbf{p}^{\prime}=\mathbf{q}$

The relevant matrix element

$$
\begin{aligned}
g_{B^{\star} B \pi} & \equiv \lim _{q^{2} \rightarrow 0} g_{B^{\star} B \pi}\left(q^{2}\right), \\
g_{B^{\star} B \pi}\left(q^{2}\right) \cdot \epsilon_{\mu}\left(\lambda, p^{\prime}\right) & =\frac{m_{\pi}^{2}-q^{2}}{m_{\pi}^{2} f_{\pi}}\langle\bar{B}(p)| A_{\mu}(q)\left|B^{\star}\left(\lambda, p^{\prime}\right)\right\rangle
\end{aligned}
$$

at zero recoil $q^{2}=0$ only A_{0} survives: $\quad g_{B^{\star} B \pi}=\frac{2 m_{V}}{f_{\pi}} A_{0}(0)$
A_{0} dominated by pion; strong dependence on $q^{2} \&$ mass
no massless state can couple to the axial current \Rightarrow

$$
2 m_{V} A_{0}(0)=\left(m_{V}+m_{P}\right) A_{1}(0)+\left(m_{V}-m_{P}\right) A_{2}(0)
$$

$$
g_{B^{\star} B \pi}=\frac{m_{V}+m_{P}}{f_{\pi}} A_{1}(0)\left[1+\frac{m_{V}-m_{P}}{m_{V}+m_{P}} \frac{A_{2}(0)}{A_{1}(0)}\right]
$$

The lattice 3pt function $\left\langle P A_{\mu} V_{\nu}^{\dagger}\right\rangle$

inserting full set of physical states (twice) and performing polarisation sum:

$\left\langle P A_{\mu} V_{\nu}^{\dagger}\right\rangle \propto$

$$
\begin{array}{r}
A_{0}\left(q^{2}\right) 2 m_{\mathrm{V}}\left\{\frac{q_{\nu} q_{\mu}}{q^{2}}-p_{\nu} q_{\mu} \frac{p q}{p^{2} q^{2}}\right\}+ \\
A_{1}\left(q^{2}\right)\left(m_{\mathrm{V}}+m_{\mathrm{P}}\right)\left[\delta_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{p^{2}}-\frac{q_{\mu} q_{\nu}}{q^{2}}+p_{\nu} q_{\mu} \frac{p q}{p^{2} q^{2}}\right]+ \\
A_{2}\left(q^{2}\right)\left[\frac{\left(p+p^{\prime}\right)_{\mu}}{m_{\mathrm{V}}+m_{\mathrm{P}}}\left\{q_{\nu}-p_{\nu} \frac{p q}{p^{2}}\right\}-\left(m_{\mathrm{V}}-m_{\mathrm{P}}\right)\left\{\frac{q_{\mu} q_{\nu}}{q^{2}}-p_{\nu} q_{\mu} \frac{p q}{p^{2} q^{2}}\right\}\right]
\end{array}
$$

with a factor like

$$
\frac{\mathrm{e}^{-E_{V} t}}{2 E_{V}} \frac{\mathrm{e}^{-E_{P}\left(t_{s}-t\right)}}{2 E_{P}} \sqrt{\mathcal{Z}_{V} \mathcal{Z}_{P}}
$$

with overlap factors: $\left.\left.\mathcal{Z}_{P}=|\langle 0| P| B\right\rangle\left.\right|^{2}, \mathcal{Z}_{V}=|\langle 0| V| B^{\star}\right\rangle\left.\right|^{2}$

Building appropriate ratios

$$
\begin{aligned}
C_{\mu \nu} & =\left\langle\sum_{\mathbf{x}, \mathbf{y}} \mathrm{e}^{-\mathrm{i} \mathbf{q} \mathbf{x}} P\left(\mathbf{y}, t_{s}\right) A_{\mu}(\mathbf{x}, t) V_{\nu}^{\dagger}(0)\right\rangle, \quad 0<t<t_{s} \leq \frac{T}{2} \\
C_{V_{\mu}} V_{\nu} & =\left\langle\sum_{\mathbf{x}} \mathrm{e}^{\mathrm{i} \mathbf{p x}} V_{\mu}(\mathbf{x}, t) V_{\nu}^{\dagger}(0)\right\rangle \simeq \mathcal{Z}_{V} \frac{\mathrm{e}^{-E_{V} t}}{2 E_{V}}\left(\delta_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{p^{2}}\right) \\
C_{P P} & =\left\langle\sum_{\mathbf{x}} \mathrm{e}^{\mathrm{i} \mathbf{p x}} P(\mathbf{x}, t) P^{\dagger}(0)\right\rangle \simeq \mathcal{Z}_{P} \frac{\mathrm{e}^{-E_{P} t}}{2 E_{P}}
\end{aligned}
$$

$$
\begin{aligned}
R_{1}(t) & =\frac{C_{i i}(t, \mathbf{0}) \sqrt{\mathcal{Z}_{V} \mathcal{Z}_{P}}}{C_{V_{i} V_{i}}(t, \mathbf{0}) C_{P P}\left(t_{s}-t, \mathbf{0}\right)} \Rightarrow A_{1}(0) \\
R_{2,3,4}(t) & =\frac{C_{10,11,22}(t, \mathbf{q}) \sqrt{\mathcal{Z}_{V} \mathcal{Z}_{P}}}{C_{V_{2} V_{2}}(t, \mathbf{q}) C_{P P}\left(t_{s}-t, \mathbf{q}\right)} \Rightarrow A_{1}(q), \frac{A_{2}(q)}{A_{1}(q)}
\end{aligned}
$$

Ongoing lattice computations

- sequential source technique for $3 p t$ function
- point sources at origin of randomly translated gauge field ...
- corresponding DWF light quark propagators available (on disk)
- producing heavy quark propagators is cheap and negligible w.r.t. ...
- $2 \times$ DWF inversion with seq. source at $t_{s}=T / 2$
- only A_{μ} needs to be renormalized, Z_{A} known!
-1 st: $q^{2} \rightarrow 0,2 \mathrm{nd}: m_{\pi} \rightarrow 0$

Outlook

- we are ready to go the way described here
- within next 1-2 months we expect to have all point source results of $\mathcal{O}(400-800)$ on $L / a=24$ analysed $(c+b)$
- next steps:

11 repeat the procedure using stochastic $\left(Z_{2}\right)$ noise
2 start same computation on $L / a=32$ as soon as RHQ parameters for bottom system are reliably known

Outlook

- we are ready to go the way described here
- within next 1-2 months we expect to have all point source results of $\mathcal{O}(400-800)$ on $L / a=24$ analysed $(c+b) \quad \rightsquigarrow$ PoS:Lattice'10
- next steps:

11 repeat the procedure using stochastic $\left(Z_{2}\right)$ noise
2 start same computation on $L / a=32$ as soon as RHQ parameters for bottom system are reliably known

Thank you for your patience!

Let's go to
Micheal Donnellan's talk, next session at 10:30 [Parallel 18], to see some new results.

