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• Since 1999, MILC Collaboration has been generating 
asqtad staggered configurations with 2+1 sea flavors.

• Use fourth root procedure to reduce unwanted 4 taste 
degrees of freedom to 1.

– good analytic and numerical evidence that this works:
• Shamir (2005,2007); CB, Golterman, & Shamir (2006,2008);         

CB (2006);  CB, Golterman, Shamir & Sharpe (2007,2008).

• Dürr & Hoelbling (2004,2005);  Follana, Hart & Davies (2004);  
MILC (2005).

• Lattice spacings from a=0.18 fm to 0.045 fm
– but only a=0.09, 0.06, and 0.045 fm used here.

MILC Ensembles
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• Simulation strange sea quark mass (      ) usually            .

• Simulation light sea mass (     ) usually                              

• 3 ensembles have 

• 1 ensemble has
– “lighter-than-physical strange” ensembles are useful in fixing 

SU(3) LECs

• Lowest Goldstone pion:
– about 175 MeV at a=0.09 fm.

– about 220 MeV at a=0.06 fm.

– about 320 MeV at a=0.045 fm.

• Volumes from (2.4 fm)3 to (5.4 fm)3;                 always.

MILC Asqtad Ensembles
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m′
s ≈ ms

0.05ms≤m̂′≤0.4ms

m′
s ≈ 0.6ms

m′
s = m̂′ ≈ 0.1ms

mπL > 4

m̂′



mπLm̂′ / m′
s

MILC Asqtad Ensembles
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a (fm) # lattices

0.09 0.0124 / 0.031 5.78 531
0.09 0.0093 / 0.031 5.04 1124

0.09 0.0062 / 0.031 4.14 591

0.09 0.00465 / 0.031 4.11 984

0.09 0.0031 / 0.031 4.21 945

0.09 0.00155 / 0.031 4.80 751

0.09 0.0062 / 0.0186 4.09 985

0.09 0.0031 / 0.0186 4.22 781

0.09 0.0031 / 0.0031 4.20 555

0.06 0.0072 / 0.018 6.33 594

0.06 0.0054 / 0.018 5.48 465

0.06 0.0036 / 0.018 4.49 751

0.06 0.0025 / 0.018 4.39 768

0.06 0.0018/ 0.018 4.27 826

0.06 0.0036 / 0.0108 5.96 601

0.045 0.0028 / 0.014 4.56 801



mπLm̂′ / m′
s

MILC Asqtad Ensembles

5

a (fm) # lattices

0.09 0.0124 / 0.031 5.78 531
0.09 0.0093 / 0.031 5.04 1124

0.09 0.0062 / 0.031 4.14 591

0.09 0.00465 / 0.031 4.11 984

0.09 0.0031 / 0.031 4.21 945

0.09 0.00155 / 0.031 4.80 751

0.09 0.0062 / 0.0186 4.09 985

0.09 0.0031 / 0.0186 4.22 781

0.09 0.0031 / 0.0031 4.20 555

0.06 0.0072 / 0.018 6.33 594

0.06 0.0054 / 0.018 5.48 465

0.06 0.0036 / 0.018 4.49 751

0.06 0.0025 / 0.018 4.39 768

0.06 0.0018/ 0.018 4.27 826

0.06 0.0036 / 0.0108 5.96 601

0.045 0.0028 / 0.014 4.56 801

lighter 
than 
physical
ms’ 



• Partially quenched data for pseudoscalar meson 
masses and decay constants.

• Systematic SU(3) chiral fits through NNLO.
– NLO includes complete (rooted) staggered chiral logs.

– at NNLO only continuum version exists (Bijnens et al., 
2004, 2005, 2006).*

– input the taste RMS meson mass to continuum formulas.

– this is systematic only if taste splittings are significantly 
smaller than the meson masses.

– starts to be true at a=0.09 fm (if we avoid lightest meson 
mass); better obeyed at a=0.06 and 0.045 fm).

Chiral fitting

6
*Thanks to Hans Bijnens for computer code for PQ NNLO logarithms
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With our stat errors, have 
never been able to get good
fits at NLO: SU(3) or SU(2)



m̂′ = 0.05m′
s

Pion Masses & Splittings
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a(fm) Goldstone RMS Singlet
0.15 236 532 660
0.12 268 455 550

0.09 (                )   174 275 340
0.09 ( other ) 240 320 377

0.06 219 253 274
0.045 318 327 337



Low Mass Chiral Fits
• systematic NNLO, using only ensembles with: 

–  (               are the valence masses.)    

• 4 of the 5 p4 LECs that first appear at NNLO (L1, L2, L3, 
L7) are constrained by priors from continuum info 
(Bijnens, 2007).

• All other LO, NLO, and NNLO LECs are unconstrained:
– 19 unconstrained params.
– 4 constrained p4 LECs + up to 8 constrained a2 variations of 

physical params.
– gives 31 params total; ~110 points

• Need to use a “renormalized chiral coupling”          to 
get acceptable fits,  not 3-flavor chiral limit     .                                           8

m′
s ≤ 0.6ms

mx + my ≤ 0.6ms

mx, my

∼ fπ

f3



Low Mass Chiral Fits

• Fit to PQ data 
for decay 
constants & 
masses 
simultaneously.

• Full covariance 
matrix.

• Here,  show                  
for                .

• These fits used 
to determine 
LECs.
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fπ

mx = my



• Same fit, but for 

for                 

• These fits used 
to determine 
LECs.

m2
π/(mx + my)

Low Mass Chiral Fits
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mx = my



0.6 mphys
s

ChPT Convergence: Low Mass

• strange mass 
held fixed at

• plotted for
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mx = my = m̂′



ChPT Convergence: Low Mass

• Test of 
convergence:

• Add in all 
N3LO & N4LO 
analytic terms.

– keep LO, 
NLO, & NNLO 
fixed.
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ChPT Convergence: Low Mass

• strange mass 
held fixed at

• plotted for

• NLO term is 
anomalously 
small for mass, 
so NNLO is a 
relatively big 
change.

• But full 
correction to LO 
is only ~11%. 13

mx = my = m̂′

0.6 mphys
s



ChPT Convergence: Low Mass

• Test of 
convergence:

• Add in all 
N3LO & N4LO 
analytic terms.

– keep LO, 
NLO, & NNLO 
fixed.
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High Mass Chiral Fits
• Need higher masses for quantities involving strange 

valence or sea quark.

• Now fit to all ensembles with a=0.09, 0.06, & 0.045 fm.

• Valence masses limited only by

• Fix LO, NLO, & NNLO LECs  from low mass fits.
– (sometimes also allow variations with width determined by 

statistical errors.)

• Add in N3LO (18) & N4LO (32) analytic terms + constrained 
a2 variations of NNLO & N3LO terms (33) = 83 params total. 

– necessary for a good CL.
– ~polynomial interpolation around strange mass.

• Not systematic (no higher chiral logs), but still controlled:
– LO, NLO (&NNLO) terms dominate slope of extrapolation to 

physical light quark masses. 15

mx + my ≤ 1.2ms



• Fit to PQ data for 
decay constants 
& masses 
simultaneously.

• Full covariance 
matrix.

• Here,  show                  
for                .

• These fits used to 
determine decay 
constants, quark 
masses, &           
2-flavor chiral 
limit quantities (f2, B2, . . . )

High Mass Chiral Fits
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fπ

mx = my



• Same fit, but 
show full QCD 
points only, for 
clarity.

High Mass Chiral Fits
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• Add in continuum 
extrapolated line, 
with ms’ = ms 

• Show 
extrapolated  
point & 
comparison with 
experiment.

• This uses the 
scale from     
splitting by 
HPQCD group:     
r1 = 0.3133(23) fm. 

High Mass Chiral Fits
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• Same fit, but for 

for                 .

m2
π/(mx + my)

High Mass Chiral Fits
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mx = my



• SU(2) fits for pure light quantities only, so far (no “heavy 
strange” yet). 

• Good SU(2) ChPT convergence in both cases.
• Physical results agree well with SU(3) fits (and expt.).

SU(2) Fits & Convergence

20
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More discussion
in X. Du’s talk 
yesterday. (See 
writeup.)



(Selected) Preliminary Results
• With HPQCD r1 = 0.3133(23):

• Using      to set the scale, find:

• From now on use      to set scale for all physical 
quantities.

• All results use SU(3) ChPT unless noted otherwise.
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SU(2): 

fπ

r1 = 0.3106(8)(18)(4) fm

fπ

fπ = 129.2± 0.4± 1.4 MeV

fπ = 130.2± 1.4
(
+2.0
−1.6

)
MeV

(last error from experimental
uncertainty: 130.4(2) MeV )

SU(3): 



• Decay constants:

•  Also get decay constants in the chiral limits (2-flavor, f2, 
and 3-flavor, f3).

• Useful for scale setting:

fK = 156.1± 0.4
(
+0.6
−0.9

)
MeV

fK/fπ = 1.197(2)
(
+3
−7

)

Vus = 0.2247
(
+14
−9

)
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f2 = 123.0± 0.5± 0.7 MeV

f2 = 123.8± 1.4
(
+1.0
−3.7

)
MeV

f3 = 118.0± 3.6± 4.6 MeV

fss.4 ≡ f(mx = my = 0.4ms, m̂, ms) = 154.0± 0.4± 0.6 MeV

(Selected) Preliminary Results

SU(2)



• Masses (at 2 GeV scale):

– errors: statistical, lattice systematics, perturbation theory, 
EM effects

–  perturbation theory (2 loop):  Q. Mason et al., Phys.
Rev. D73 (2006) 114501 [hep-lat/0511160].

– perturbative error assumed: 23

mMS
s = 87.0(0.2)(1.5)(4.4)(0.1) MeV

m̂MS = 3.17(1)(7)(16)(0) MeV

m̂MS = 3.19(4)
(
+5
−3

)
(16)(0) MeV

ms/m̂ = 27.46(4)(16)(0)(4)

mMS
u = 1.91(1)(6)(10)(12); MeV

mMS
d = 4.43(1)(8)(22)(12); MeV

mu/md = 0.432(1)(7)(0)(39)

2α3

(Selected) Preliminary Results

SU(2)



• EM effects are by far largest systematic in mu/md.

• At present use continuum phenomenology for EM 
effects of K+ mass.

• To improve situation, we are calculating EM effects 
on the lattice: see talks by E. Freeland (this session); 
and A. Turok (parallel 45, Thursday.)
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(Selected) Preliminary Results



• NLO Low Energy Constants for SU(3) (chiral scale       ):

• NLO Low Energy Constants for SU(2):

25

(Selected) Preliminary Results

L5 = 1.79(16)(33) × 10−3

L4 = 0.19(21)(14) × 10−3

2L6 − L4 = 0.09(23)(27) × 10−3

2L8 − L5 = −0.51(11)(35) × 10−3

L6 = 0.14(19)(15) × 10−3

L8 = 0.64(7)(6) × 10−3

l̄3 = 3.7(1.2)(1.4)

l̄3 = 2.85(81)
(
+37
−92

)

l̄4 = 3.96(26)(27)

l̄4 = 3.98(32)
(
+51
−28

)

direct SU(2)

direct SU(2)

from SU(3) @ NLO

from SU(3) @ NLO

mη
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Big errors 
because of 
NNLO 
terms in fit
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• NNLO Low Energy Constants for SU(3) [definitions 
of Bijnens, Colangelo, Ecker (1999)]

– PQ SU(3) LECs:

– full SU(3) LECs:

• Other NNLO LECs are also ~10-6, but statistical or 
systematic errors (or both) are more than 100%.
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(Selected) Preliminary Results

K21 = 6.7(2.2)(3.4) × 10−6

K27 = 0.4(2)(3) × 10−6

K39 −K17 = 3.9(1.1)(1.6) × 10−6

C16 = 7.1(2.3)(4.0) × 10−6



• Behavior for 3 degenerate flavors:

• Good convergence up to mx + my ~1.2ms, well beyond mK.

ChPT Convergence: High Mass
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• Behavior for strange sea quark fixed at ms.

• no convergence at NNLO for    ; fair for 
– not completely surprising: ChPT is an asymptotic expansion.
– NLO does quite well though, for 

ChPT Convergence: High Mass
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fπ m2
π/(mx+my)

fπ



• To study how breakdown occurs at ms, consider ms’ 
dependence at vanishing light sea mass & valence masses.

• Breakdown occurs at 

ChPT Convergence: High Mass
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m′
s ≈ 0.6ms to 0.8ms



Conclusions 
• Nearing completion of asqtad staggered analysis of 

pseudoscalar-meson quantities.

• Precise results (<1%) for several quantities in 
continuum limit & for physical quark masses.

– e.g.

– SU(3) and SU(2) fits give good agreement. 

• ChPT through NNLO gives very good representation 
of our data up through 0.6 ms.

• At ms (with other quarks light), asymptotic nature of 
chiral expansion evident.

– NNLO terms can start to show divergent behavior.

– adding effective, higher order analytic terms necessary to 
describe data.
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fK , fK/fπ



Outlook 

• HISQ program of 2+1+1 simulations is well under 
way.

• Current method should work well starting at 0.12 fm.

• Expect significantly smaller systematic errors.

• Need to extend staggered ChPT to include heavy 
staggered charm quark.
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