# Chiral Aspects of Improved Staggered Fermions with 2 + 1-Flavors from the hotQCD Collaboration

## Wolfgang Söldner<sup>1</sup> for the hotQCD Collaboration

<sup>1</sup>HICforFAIR International Center at GSI Darmstadt, Germany

Lattice 2010, Sardinia, Italy

W. Söldner (hotQCD)

Chiral Aspects of Improved Staggered Ferm.

Lattice2010 1 / 15

A D N A B N A B N

## The hotQCD Collaboration

#### Members of the hotQCD Collaboration

| A. Bazavov   | T. Bhattacharya | M. Cheng     |
|--------------|-----------------|--------------|
| N. Christ    | C. DeTar        | S. Gottlieb  |
| R. Gupta     | P. Hegde        | U.M. Heller  |
| C. Jung      | F. Karsch       | E. Laermann  |
| L. Levkova   | C. Miao         | R. Mawhinney |
| S. Mukherjee | P. Petreczky    | D. Renfrew   |
| C. Schmidt   | R. Soltz        | WS           |
| R. Sugar     | D. Toussaint    | W. Unger     |
| P. Vranas    |                 | -            |

イロト イポト イヨト イヨト

## **Motivation**

## Motivation

Different results of the two groups: hotQCD  $\leftrightarrow$  Wuppertal-Budapest

 $\Rightarrow$  calculations closer to the continuum are necessary, i.e. go to larger  $N_{\tau}$  and/or improve action

## **NEW RESULTS**

- asoptad action for  $N_{\tau} = 12$  (larger  $N_{\tau}$ )
- HISQ action for  $N_{\tau} = 8$  (more improved action)
- in addition: asqtad action for  $N_{\tau} = 8$  for  $m_l = 0.05 m_s$

< ロ > < 同 > < 回 > < 回 >

## **Outline**

#### Topics covered by this talk:

- Chiral properties of QCD thermodynamics
  - (Subtracted) chiral condensate
  - Connected and disconnected chiral susceptibility
- Renormalized Polyakov loop, strange quark number susceptibility
- *T<sub>c</sub>*: continuum extrapolation
- QCD Equation of State

## See also talk by A. Bazavov for the hotQCD collaboration

Taste symmetry and QCD thermodynamics with improved staggered fermions

< ロ > < 同 > < 回 > < 回 >

## Numerical Details

#### Data Overview

- p4fat3:  $N_{\tau} = 4, 6, 8$   $\frac{m_l}{m_s} = \dots, 0.2, 0.1, 0.05$
- asqtad:  $N_{\tau} = 4, 6, 8, 12$   $\frac{m_l}{m_s} = \dots, 0.2, 0.1, 0.05$
- hisq:  $N_{\tau} = 6,8$   $\frac{m_l}{m_s} = 0.2, 0.05$

## Scale Setting and LCP

- Scale is set by *r*<sub>1</sub> = 0.318fm (0.3117fm), *r*<sub>0</sub> = 0.469fm
- Line of constant physics (LCP): set strange quark mass m<sub>s</sub> to physical value, keep m<sub>l</sub>/m<sub>s</sub> fixed

## Thanks to

## supercomputing centers at Brookhaven (BNL), Jülich, Livermoore (LLNL)

W. Söldner (hotQCD)

## (Subtracted) Chiral Condensate

#### Preliminary



Definition:  $\Delta_{I,s} = \frac{\langle \bar{\psi}\psi \rangle_{I,\tau} - \frac{m_I}{\bar{m}_s} \langle \bar{\psi}\psi \rangle_{s,\tau}}{\langle \bar{\psi}\psi \rangle_{I,0} - \frac{\bar{m}_I}{\bar{m}_s} \langle \bar{\psi}\psi \rangle_{s,0}}$ • combination: cancel add. renormalization • normalization by T = 0: cancel mult. renormalization

factors

#### Details

- sharp drop in  $\Delta_{l,s}$  for  $m_l = 0.1 m_s$  and  $m_l = 0.05 m_s$
- $N_{\tau} = 12 \rightarrow$  shift towards lower temperature

## (Subtracted) Chiral Condensate

## Preliminary





- combination: cancel add. renormalization
- normalization by T = 0: cancel mult. renormalization factors

## Details

- sharp drop in  $\Delta_{l,s}$  for  $m_l = 0.1 m_s$  and  $m_l = 0.05 m_s$
- $N_{\tau} = 12 \rightarrow$  shift towards lower temperature

## **Disconnected Chiral Susceptibility**

## Preliminary



## Asqtad action

(Full) chiral susceptibility

 $\chi_{m,I} \equiv \chi_{I,disc} + 2\chi_{I,con}$ 

- peak location related to singular part of partition function:  $\chi_{m,l} \equiv \frac{T}{V} \frac{\partial^2}{\partial m^2} \ln Z$
- pseudo-critical temperature  $T_{m,l}$ chiral limit  $\rightarrow \chi_{m,l}(T_{m,l}) \sim m_l^{\frac{1}{\delta}-1}$

## Disconn. chiral susceptibility $\chi_{I,disc}$

- dominated by singular part in partition function (in chiral limit)
- T<sub>c</sub> determination

## **Disconnected Chiral Susceptibility**

## Preliminary



(Full) chiral susceptibility

 $\chi_{m,l} \equiv \chi_{l,disc} + 2\chi_{l,con}$ 

- peak location related to singular part of partition function:  $\chi_{m,l} \equiv \frac{T}{V} \frac{\partial^2}{\partial m_l^2} \ln Z$
- pseudo-critical temperature  $T_{m,l}$ chiral limit  $\rightarrow \chi_{m,l}(T_{m,l}) \sim m_l^{\frac{1}{\delta}-1}$

## Disconn. chiral susceptibility $\chi_{I,disc}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- dominated by singular part in partition function (in chiral limit)
- T<sub>c</sub> determination

**Disconnected Chiral Susceptibility** 

## **Disconnected Chiral Susceptibility**

#### Preliminary



Expected behavior  $\sim \frac{1}{\sqrt{m}}$  ( $\rightarrow$  due to Goldstone modes)

## $T_c$ : continuum extrapolation I

#### Procedure

- find peak position in disconnected chiral susceptibility
- data set: Asqtad action

$$N_{\tau} = 6 \left( \frac{m_l}{m_s} = 0.2, 0.1 \right)$$
  

$$N_{\tau} = 8 \left( \frac{m_l}{m_s} = 0.2, 0.1, 0.05 \right)$$
  

$$N_{\tau} = 12 \left( \frac{m_l}{m_s} = 0.05 \right)$$

- different ansätze for fitting function of peak position, e.g.  $\chi_{l,disc} = c_0 + c_2(T - T_p)^2 + c_3(T - T_p)^3$   $\chi_{l,disc} = c_0 + c_2(T - T_p) + c_3\sqrt{(T - T_p)^2 + c_4^2}$   $\rightarrow \text{asymmetric peak shape}$ 
  - $\rightarrow$  systematic error

< ロ > < 同 > < 回 > < 回 >

T<sub>c</sub>: continuum extrapolation

## $T_c$ : continuum extrapolation II

## Preliminary



#### Details

• Ansatz for mass and  $N_{\tau}$  dependence:  $T_c = a + b(\frac{m_l}{m_s})^d + c\frac{1}{N_{\tau}^2}$   $\rightarrow$  using critical exponent  $d \approx 1.08$ from O(N) model

• stable fit (when omitting  $N_{\tau} = 4$  data)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

⇒ continuum extrapolated  $T_c$  at physical mass parameter  $\frac{m_l}{m_s} = \frac{1}{27}$ : (preliminary)  $T_c = 164 \pm 6$  MeV (stat. and syst.)

## **Connected Chiral Susceptibility**

#### Preliminary



## Details: $\chi_{I,con}$

- related to scalar, non-singlet screening mass
   → thermal properties of medium
- Note: U<sub>A</sub>(1) becomes effectively restored at T > T<sub>c</sub>(chiral)

A (1) > A (2) > A

 $\chi_{I,con}$  peak position at  $T > T_c(chiral)$ 

$$\chi_{l,con} \equiv \frac{1}{4} \sum_{x} \left\langle D_l^{-1}(x,0) D_l^{-1}(0,x) \right\rangle$$

## **Renormalized Polyakov Loop**

## Preliminary



## $L_{ren}(\vec{x}) = Z_r \; \frac{1}{3} \mathrm{Tr} \prod_{x_0=1}^{N_\tau} U_0(x_0, \vec{x})$

## Details: Polyakov loop

- indicator of the deconfinement transition
- rapid rise in the transition region
  - $\rightarrow$  screening of color charges
- good agreement of different actions with different N<sub>τ</sub>

## Strange Quark Number Susceptibility

## Preliminary



$$\frac{\chi_s}{T^2} \equiv \frac{1}{VT^3} \frac{\partial^2 \ln Z}{\partial (\mu_s/T)^2}$$

## Details: $\chi_s(T)$

- indicator of the deconfinement transition
- rapid rise in the transition region
   → liberation of degrees of freedom
- dependence on the action and N<sub>τ</sub> visible
- chiral symmetry restoration and deconfinement appear at about the same temperature

## **Equation of State**

## Preliminary



## QCD Lattice EoS

- left panel: data for  $\frac{m_l}{m_s} = 0.1 \Rightarrow$  smooth parameterization available
- right panel: EoS at low T
  - $\Rightarrow$  qualitative agreement, still more work needs to be done!

## Summary

#### New Data

- asquad action for  $N_{\tau} = 12$  (larger  $N_{\tau}$ )
- HISQ action for  $N_{\tau} = 8$  (more improved action)
- in addition: asquad action for  $N_{\tau} = 8$  for  $m_l = 0.05 m_s$

#### **Chiral Aspects**

- *T<sub>c</sub>* continuum extrapolation from disconnected chiral susceptibility
   → at physical point (preliminary) *T<sub>c</sub>* = 164 ± 6 MeV (stat. and syst.)
- Goldstone modes:  $\sim 1/\sqrt{m}$  in disconnected chiral susceptibility
- connected chiral susceptibility: peak position at  $T > T_c(chiral)$
- chiral symmetry restoration and deconfinement appear at about the same temperature

## Equation of State: Updated with new data

good qualitative agreement, but more work needs to be done!