Flavour Symmetry and Flavour Symmetry Breaking in $2+1$ flavour lattice simulations

Paul Rakow for QCDSF

QCDSF

W Bietenholz, V Bornyakov, N Cundy, M Göckeler, T Hemmert, R Horsley, AD Kennedy, WG Lockhart, Y Nakamura, H Perlt, D Pleiter, PR, A Schäfer, G Schierholz, A Schiller, T Streuer, H Stüben, F Winter, JM Zanotti, ...

2+1 project - results arriving - talks and posters at LAT10.

Introduction

The QCD interaction is favour-blind. Neglecting electromagnetic and weak interactions, the only difference between favours comes from the mass matrix. We investigate how favour-blindness constrains hadron masses after favour SU(3) is broken by the mass difference between the strange and light quarks, to help us extrapolate $2+1$ favour lattice data to the physical point.
We have our best theoretical understanding when all 3 quark flavours have the same masses (because we can use the full power of favour $S U(3)$); nature presents us with just one instance of the theory, with $m_{s} / m_{l} \approx 25$. We are interested in interpolating between these two cases.

Introduction

We consider possible behaviours near the symmetric point, and find that favour blindness is particularly helpful if we approach the physical point along a path with $m_{u}+m_{d}+m_{s}$ held constant. We also show that on this trajectory the errors of the partially quenched approximation are much smaller than on other trajectories.

Strategy

Start from a point with all 3 sea quark masses equal,

$$
m_{u}=m_{d}=m_{s} \equiv m_{0}
$$

and extrapolate towards the physical point, keeping the average sea quark mass

$$
\bar{m} \equiv \frac{1}{3}\left(m_{u}+m_{d}+m_{s}\right)
$$

constant.
Starting point has

$$
m_{0} \approx \frac{1}{3} m_{s}^{p h y s}
$$

As we approach the physical point, the u and d become lighter, but the s becomes heavier. Pions are decreasing in mass, but K and η increase in mass as we approach the physical point.

Quark Masses

Notation

$$
\begin{aligned}
\bar{m} \equiv \frac{1}{3}\left(m_{u}\right. & \left.+m_{d}+m_{s}\right) \\
\hat{m}_{u} & \equiv m_{u}-m_{0} \\
\hat{m}_{d} & \equiv m_{d}-m_{0} \\
\hat{m}_{s} & \equiv m_{s}-m_{0}
\end{aligned}
$$

Quark Masses

The quark mass matrix is

$$
\begin{aligned}
\mathcal{M} & =\left(\begin{array}{ccc}
m_{u} & 0 & 0 \\
0 & m_{d} & 0 \\
0 & 0 & m_{s}
\end{array}\right) \\
& =\bar{m}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\hat{m}_{u}-\hat{m}_{d}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)+\frac{1}{2} \hat{m}_{s}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

\mathcal{M} has a singlet part (proportional to I) and an octet part, proportional to λ_{3}, λ_{8}. In clover case, the singlet and non-singlet parts of the mass matrix renormalise differently.

Quark Masses

The quark mass matrix is

$$
\begin{aligned}
\mathcal{M} & =\left(\begin{array}{ccc}
m_{u} & 0 & 0 \\
0 & m_{d} & 0 \\
0 & 0 & m_{s}
\end{array}\right) \\
& =\bar{m}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\frac{1}{2}\left(\hat{m}_{u}-\hat{m}_{d}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)+\frac{1}{2} \hat{m}_{s}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

We argue that the theoretically cleanest way to approach the physical point is to keep the singlet part of \mathcal{M} constant, and vary only the non-singlet parts.

Singlet Quantities

Consider a favour singlet quantity (eg r_{0}, P) at the symmetric point (m_{0}, m_{0}, m_{0}).

$$
\frac{\partial r_{0}}{\partial m_{u}}=\frac{\partial r_{0}}{\partial m_{d}}=\frac{\partial r_{0}}{\partial m_{s}} .
$$

If we keep $m_{u}+m_{d}+m_{s}$ constant, $d m_{s}=-d m_{u}-d m_{d}=-2 d m_{l}$ so

$$
d r_{0}=d m_{u} \frac{\partial r_{0}}{\partial m_{u}}+d m_{d} \frac{\partial r_{0}}{\partial m_{d}}+d m_{s} \frac{\partial r_{0}}{\partial m_{s}}=0
$$

The effect of making the strange quark heavier exactly cancels the effect of making the light quarks lighter, so we know that r_{0} must have a stationary point at the symmetrical point.

Singlet Quantities

Singlet Quantities

Any permutation of the quarks

$$
u \leftrightarrow s, \quad u \rightarrow d \rightarrow s \rightarrow u
$$

doesn't really change physics, it just renames the quarks. Any quantity unchanged by all permutations will also be fat at the symmetric point.

Singlet Quantities

Singlet Quantities

Permutation sets

Singlet Quantities

$$
\begin{gathered}
2\left(M_{N}+M_{\Sigma}+M_{\Xi}\right) \\
M_{\Sigma}+M_{\Lambda}
\end{gathered}
$$

Singlet Quantities

$$
\begin{gathered}
4 M_{K}^{2}+2 M_{\pi}^{2} \\
M_{\pi}^{2}+M_{\eta}^{2}
\end{gathered}
$$

Singlet Quantities

Use singlets to locate the starting point of our path to physics

$$
\frac{2 M_{K}^{2}+M_{\pi}^{2}}{M_{N}+M_{\Sigma}+M_{\Xi}}=\text { physical value }
$$

$\mathrm{SU}(3)$ classification

The permutation group yields a lot of useful relationships, but can't capture the entire structure. No connection between Δ^{++}, uuu and Δ^{+}, uud.

SU(3) classification

- Classify physical quantities by $S U(3)$ and permutation group (which is a subgroup of $\mathrm{SU}(3)$).
- Classify quark mass polynomials in same way.
- Taylor expansion about $\left(m_{0}, m_{0}, m_{0}\right)$ strongly constrained by symmetry.

SU(3) classification

Polynomial		S_{3}		$S U(3)$
1	\checkmark	A_{1}	1	
$\left(\bar{m}-m_{0}\right)$		A_{1}	1	
$\begin{gathered} \hat{m}_{s} \\ \left(\hat{m}_{u}-\hat{m}_{d}\right) \end{gathered}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & E^{+} \\ & E^{-} \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$
$\begin{gathered} \left(\bar{m}-m_{0}\right)^{2} \\ \left(\bar{m}-m_{0}\right) \hat{m}_{s} \\ \left(\bar{m}-m_{0}\right)\left(\hat{m}_{u}-\hat{m}_{d}\right) \end{gathered}$		$\begin{aligned} & A_{1} \\ & E^{+} \\ & E^{-} \end{aligned}$	1	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
$\begin{gathered} \hat{m}_{u}^{2}+\hat{m}_{d}^{2}+\hat{m}_{s}^{2} \\ 3 \hat{m}_{s}^{2}-\left(\hat{m}_{u}-\hat{m}_{d}\right)^{2} \\ \hat{m}_{s}\left(\hat{m}_{d}-\hat{m}_{u}\right) \end{gathered}$	\checkmark \checkmark \checkmark \checkmark	$\begin{aligned} & A_{1} \\ & E^{+} \\ & E^{-} \end{aligned}$	1	$\begin{array}{ll} \hline & 27 \\ 8 & 27 \\ 8 & 27 \end{array}$

SU(3) classification

Polynomial		S_{3}	$S U(3)$			
$\left(\bar{m}-m_{0}\right)^{3}$		A_{1}	1			
$\left(\bar{m}-m_{0}\right)^{2} \hat{m}_{s}$		E^{+}	8			
$\left(\bar{m}-m_{0}\right)^{2}\left(\hat{m}_{u}-\hat{m}_{d}\right)$		E^{-}		8		
$\left(\bar{m}-m_{0}\right)\left(\hat{m}_{u}^{2}+\hat{m}_{d}^{2}+\hat{m}_{s}^{2}\right)$		A_{1}	1			27
$\left(\bar{m}-m_{0}\right)\left[3 \hat{m}_{s}^{2}-\left(\hat{m}_{u}-\hat{m}_{d}\right)^{2}\right]$		E^{+}	8		27	
$\left(\bar{m}-m_{0}\right) \hat{m}_{s}\left(\hat{m}_{d}-\hat{m}_{u}\right)$		E^{-}	8	27		
$\hat{m}_{u} \hat{m}_{d} \hat{m}_{s}$	\checkmark	A_{1}	1			27
$\hat{m}_{s}\left(\hat{m}_{u}^{2}+\hat{m}_{d}^{2}+\hat{m}_{s}^{2}\right)$	\checkmark	E^{+}		8		27
$\left(\hat{m}_{u}-\hat{m}_{d}\right)\left(\hat{m}_{u}^{2}+\hat{m}_{d}^{2}+\hat{m}_{s}^{2}\right)$	\checkmark	E^{-}	8		27	64
$\left(\hat{m}_{s}-\hat{m}_{u}\right)\left(\hat{m}_{s}-\hat{m}_{d}\right)\left(\hat{m}_{u}-\hat{m}_{d}\right)$	\checkmark	A_{2}		10	$\overline{10}$	

SU(3) classification

SU(3) classification

SU(3) classification

The only quantities with a non-zero slope at symmetric point are favour octet quantities.
(only applies on $m_{u}+m_{d}+m_{s}=$ const line.)
Often slopes highly constrained:
Decuplet baryons - 4 particles; but 1 slope parameter.
Octet baryons - 4 particles; but 2 slopes.
Octet mesons - 3 particles; but 1 slope parameter.

Gell Man Okubo relations

$$
\begin{aligned}
4 M_{\Delta}+3 M_{\Sigma^{*}}+2 M_{\Xi^{*}}+M_{\Omega} & =13.821 \mathrm{GeV} \\
-2 M_{\Delta}+M_{\Xi^{*}}+M_{\Omega} & =0.742 \mathrm{GeV} \\
4 M_{\Delta}-5 M_{\Sigma^{*}}-2 M_{\Xi^{*}}+3 M_{\Omega} & =-0.044 \mathrm{GeV} \\
-M_{\Delta}+3 M_{\Sigma^{*}}-3 M_{\Xi^{*}}+M_{\Omega} & =-0.006 \mathrm{GeV}
\end{aligned}
$$

Hierarchy:

$$
\begin{aligned}
& 1, \quad 8, \quad 27, \quad 64 . \\
& \left(m_{s}-m_{l}\right)^{0}, \quad\left(m_{s}-m_{l}\right)^{1}, \quad\left(m_{s}-m_{l}\right)^{2}, \quad\left(m_{s}-m_{l}\right)^{3}
\end{aligned}
$$

Suggests short Taylor series may work well all the way from symmetry point (m_{0}, m_{0}, m_{0}) to physical point.

Partial Quenching

Partial quenching (making measurements with valence quarks which have masses different from the sea quarks used to generate a configuration) works well along the line $\bar{m}_{\text {sea }}=$ const. The argument is very similar to the one we gave earlier, the effects of making the $u_{\text {sea }}$ and $d_{\text {sea }}$ lighter is largely cancelled by the effect of making the $s_{\text {sea }}$ heavier. The cancellation is perfect at the symmetric point. On our trajectory, the error from partial quenching is quadratic in the quark mass; normally partial quenching errors are linear in m_{q}.

Partial Quenching

Flavour Symmetryand Flavour Symmetry Breakingin $2+1$ flavour lattice simulations - p.26/3

Partial Quenching

Partial Quenching

As an example, let us look at the Ω made with three quarks with $\kappa_{\text {val }}=0.12080$.
We have measured this combination on 4 different backgrounds, 3 with the same value for $\left(m_{u}+m_{d}+m_{s}\right)_{\text {sea }}$, and one lying off the trajectory, with a larger value of $\left(m_{u}+m_{d}+m_{s}\right)_{\text {sea }}$.

$\kappa_{l}^{\text {sea }}$	$\kappa_{s}^{\text {sea }}$	$\kappa^{\text {val }}$	$a M_{\Omega}$	
0.12100	0.12070	0.12080	$0.610(7)$	PQ
0.12095	0.12080	0.12080	$0.605(4)$	full
0.12090	0.12090	0.12080	$0.608(7)$	PQ
0.12080	0.12080	0.12080	$0.642(10)$	full

On trajectory, PQ and full results agree, but not off the trajectory.

Partial Quenching

Partial Quenched mass formulae. $\left(m_{u}+m_{d}+m_{s}\right)_{\text {sea }}$ held constant - no constraint on valence masses.

$$
\hat{\mu}_{f} \equiv m_{f}^{v a l}-m_{0}
$$

Can rotate valence masses independently of sea masses. Sea masses - singlet polynomials.

Constraint: Ω mass independent of $m_{u}^{v a l}, m_{d}^{v a l}$.
Second order polynomials - singlet coefficients fixed by 8-plet and 27-plet.

Partial Quenching

Decuplet

$$
\begin{aligned}
& q_{1} q_{2} q_{3} \\
& \hat{\mu}_{1}+\hat{\mu}_{2}+\hat{\mu}_{3}
\end{aligned}
$$

Second order

$$
\begin{gathered}
\hat{\mu}_{1}^{2}+\hat{\mu}_{2}^{2}+\hat{\mu}_{3}^{2} \\
\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{2}+\left(\hat{\mu}_{1}-\hat{\mu}_{3}\right)^{2}+\left(\hat{\mu}_{2}-\hat{\mu}_{3}\right)^{2}
\end{gathered}
$$

(or linear combinations, eg

$$
\hat{\mu}_{1} \hat{\mu}_{2}+\hat{\mu}_{1} \hat{\mu}_{3}+\hat{\mu}_{2} \hat{\mu}_{3}
$$

Partial Quenching

$$
\begin{aligned}
M_{\Delta}= & M_{0}+3 A \hat{\mu}_{l}+B_{0} \hat{m}_{l}^{2}+3 B_{1} \hat{\mu}_{l}^{2} \\
M_{\Sigma^{*}}= & M_{0}+A\left(2 \hat{\mu}_{l}+\hat{\mu}_{s}\right)+B_{0} \hat{m}_{l}^{2} \\
& +B_{1}\left(2 \hat{\mu}_{l}^{2}+\hat{\mu}_{s}^{2}\right)+B_{2}\left(\hat{\mu}_{s}-\hat{\mu}_{l}\right)^{2} \\
M_{\Xi^{*}}= & M_{0}+A\left(\hat{\mu}_{l}+2 \hat{\mu}_{s}\right)+B_{0} \hat{m}_{l}^{2} \\
& +B_{1}\left(\hat{\mu}_{l}^{2}+2 \hat{\mu}_{s}^{2}\right)+B_{2}\left(\hat{\mu}_{s}-\hat{\mu}_{l}\right)^{2} \\
M_{\Omega}= & M_{0}+3 A \hat{\mu}_{s}+B_{0} \hat{m}_{l}^{2}+3 B_{1} \hat{\mu}_{s}^{2}
\end{aligned}
$$

Conclusions

- Extrapolating from lattice simulations to the physical quark masses is made much easier by keeping $m_{u}+m_{d}+m_{s}$ constant.
- Flavour SU(3) analysis strongly constrains Taylor expansions in quark masses.
- See next talk for how well the idea works in practice.

Extra

Allowed Region

