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Introduction

At N = oo SU(N) pure YM simplifies, but this has not yet been
turned into a quantitative tool. Our objective is to change this
state of affairs.

Let O be an observable characterized by one single scale /.
For INy < 1, (O)n—s Can be computed by summing up
contributions from planar Feyman diagrams. Moreover, there
are good reasons to believe that the series in Iog(lA j converges.
For IANNy > 1, for a class of specific O’s, (O) -~ Can be
expanded in ﬁ using an effective theory based on free strings.
How are the two regimes connected ?

Some O’s have a narrow crossover as / changes from /Ay < 1
to INy > 1 at finite N, becoming a “phase transition” at N = .
Such large N phase transitions tend to fall in Random Matrix
universality classes. The hope is to exploit this to connect field
theoretical perturbation theory to effective string theory. 7
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Wilson loop operator - ignoring renormalization

» Pelfe AR = Qp(C), R = SU(N)-representation.
Wg(C) = tr(Qg(C))/dr are Wilson loops.

» Restrict to totally antisymmetric representations,
R=k,N—k; k=1,..,[5]. The generating function for
the W is (det(z + Q2¢(C))) = Q(z,C), a palindromic
polynomial of rank N in z.

» As N — oo a continuum density of roots of Q(z,(C)
develops, supported on |z| = 1, gapped at z = 1 for small
loops, and uniform for infinite loops.

» As the loop C is dilated, its minimal area A grows and one
can extract k-string tensions o, from W (C) ~ exp(—oxA).
Hence, for very large loops the deviation of the density
from uniformity is controlled by [N/2] exponents e~ 7«4,
dominated by e~
@
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Large N phase transition

» Separates small from large loops and occurs in D=2,3,4.

» Close to critical loop-size, and for z close to 1, there is a
universal description common to all dimensions.

» The case D = 2 is exactly soluble so universal form is
known.

» This “phase transition” is seen only in Q(z,C), but not in
the individual Wy'’s.

» The universality provides an economic parametrization of
the short-scale to long-scale crossover in Q(z,C) for
1< N < oo.

» For this to be meaningful, need to renormalize Q(z,C).
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Renormalization of Wilson loops

> Q(z,C) = (det(1 + zQ(C))).
det[1 + zQf(C)] = [[dbdy]eo dP@)0r—n—ial@)]i(e),
» z= e, o parametrizes C by x(c), [0,X.(0)]? = 1.
I is the length of C.
(o), (o) obey a.p.b.c.
a(o) = Au(x(a)) 22,
Q(z,C) = {[[dddi]el do@)0m~u—ialo)u(@)y
Non-redundant ct-s: []X, k =1,..N
=P, —1, A, — Ab = numberof ct-sis [§].
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Can make 4-Wp(C) < 1 for all antisymmetric R.
= Q(z,C) is palindromic & all roots on |z| = 1.
Divergences are linear in 4D and logarithmic in 3D. o

RUTGERS

v

v

From loops to surfaces 6/10



Large N transition and a Dirac operator

» The [§] ct-s are necessary to eliminate the [¥] perimeter
divergences associated with the distinct N-ality
representations, not counting conjugate ones.

» Physically, the ct-s represent the arbitrary amounts of
thickening the distinct k-strings need.

» On the lattice they are implemented by coarsening (via a
continuous version of smearing/cooling/...) the gauge fields
the fermions see.

» The spectrum of Dy(C) = 9, — ia(c) will have a gap for
small loops and will be gap-less for large loops.

» There is an analogy to spontaneous chiral symmetry
breaking and its connection to chiral random matrix theory.
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Surface observable

>

Replace the curve by a 2-dimensional surface ¥, described
by x,,(c). Put massive Dirac fermions on X, which is
characterized by a single scale /.

At zero mass, one has chiral symmetry and the fermionic
determinant is the exponent of the Polyakov-Wiegmann
action.

[

The gauge connection on L is a, = A, (x(0)) 5.~

The massless Dirac operator is Do(X) = 74 [0s,, — i@a(0)].
Qu,X) = <f[d11_1dll}]efi dzmﬂ(U)[Dz(Z)*u]w(UU

Currents: L(0) = %(0)7a TH(0), o = P(0)7atb(0).

Only two ct-s are L4 = JQJ{;, Lo = Jdydg.

At N = oo a Sy SB transition is possible, depending on /.

In 4D one has logarithmic divergences, and £ will be
generated, but in 3D no ct-s are generated because the
theory is superrenormalizable. s
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Results in 3D

» No renormalization necessary; set = 0 and N = .
» For T an infinite plane: () y—o = 0.29(1),/o¢

» For X a cylinder with square base of side s: spontaneous
chiral symmetry breaking at s > s and preserved chiral
symmetry for s < s¢.

» For s > s with (8 —8¢)/sc < 1 we have
(D) N=oo o (5 — 5¢c)"/2
» sc = 1.4(1)/\/o¢
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Outlook
» Generalize to 4D.
» Find analytical ways to get (¢))) and s in 3D.
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