From loops to surfaces

Herbert Neuberger

Department of Physics Rutgers University Piscataway, NJ08854

in collaboration with Rajamani Narayanan at FIU

Sardinia, Lattice 2010, June, 2010

Outline

Introduction

Loops

Surfaces

Results in 3D

Outlook

RUTGERS 2/10

Introduction

At $N = \infty$ SU(N) pure YM simplifies, but this has not yet been turned into a quantitative tool. Our objective is to change this state of affairs.

Let \mathcal{O} be an observable characterized by one single scale *I*. For $I\Lambda_N \ll 1$, $\langle \mathcal{O} \rangle_{N=\infty}$ can be computed by summing up contributions from planar Feyman diagrams. Moreover, there are good reasons to believe that the series in $\frac{1}{\log(1/\Lambda_{W})}$ converges. For $I\Lambda_N \gg 1$, for a class of specific \mathcal{O} 's, $\langle \mathcal{O} \rangle_{N=\infty}$ can be expanded in $\frac{1}{I\Lambda_{A}}$ using an effective theory based on free strings. How are the two regimes connected ? Some \mathcal{O} 's have a narrow crossover as *I* changes from $I\Lambda_N < 1$ to $I\Lambda_N > 1$ at finite N, becoming a "phase transition" at $N = \infty$. Such large *N* phase transitions tend to fall in Random Matrix universality classes. The hope is to exploit this to connect field theoretical perturbation theory to effective string theory.

Wilson loop operator - ignoring renormalization

- ► $\mathcal{P}e^{i\oint_{\mathcal{C}}A_{R}\cdot dx} \equiv \Omega_{R}(\mathcal{C}), R = SU(N)$ -representation. $W_{R}(\mathcal{C}) = \operatorname{tr}\langle\Omega_{R}(\mathcal{C})\rangle/d_{R}$ are Wilson loops.
- Restrict to totally antisymmetric representations, R = k, N − k; k = 1, ..., [^N/₂]. The generating function for the W_k is ⟨det(z + Ω_f(C))⟩ = Q(z,C), a palindromic polynomial of rank N in z.
- As N → ∞ a continuum density of roots of Q(z, C) develops, supported on |z| = 1, gapped at z = 1 for small loops, and uniform for infinite loops.
- As the loop C is dilated, its minimal area A grows and one can extract k-string tensions σ_k from W_k(C) ~ exp(−σ_kA). Hence, for very large loops the deviation of the density from uniformity is controlled by [N/2] exponents e^{−σ_kA}, dominated by e^{−σ_fA}.

Large N phase transition

- Separates small from large loops and occurs in D=2,3,4.
- Close to critical loop-size, and for z close to 1, there is a universal description common to all dimensions.
- The case D = 2 is exactly soluble so universal form is known.
- ► This "phase transition" is seen only in Q(z, C), but not in the individual W_k's.
- The universality provides an economic parametrization of the short-scale to long-scale crossover in Q(z, C) for 1 ≪ N < ∞.</p>
- For this to be meaningful, need to renormalize Q(z, C).

Renormalization of Wilson loops

•
$$Q(z, C) = \langle \det(1 + z\Omega_f^{\dagger}(C)) \rangle.$$

- det[1 + $z\Omega_f^{\dagger}(\mathcal{C})$] = $\int [d\bar{\psi}d\psi]e^{\int_0^t d\sigma\bar{\psi}(\sigma)[\partial_\sigma \mu ia(\sigma)]\psi(\sigma)}$.
- ► $z = e^{-\mu l}$, σ parametrizes C by $x(\sigma)$, $[\partial_{\sigma} x_{\mu}(\sigma)]^2 = 1$.
- ► *I* is the length of *C*.
- $\bar{\psi}(\sigma), \psi(\sigma)$ obey a.p.b.c.

•
$$a(\sigma) = A_{\mu}(x(\sigma)) \frac{\partial x_{\mu}(\sigma)}{d\sigma}$$

• $Q(z, C) = \langle \int [d\bar{\psi}d\psi] e^{\int_0^l d\sigma\bar{\psi}(\sigma)[\partial_\sigma - \mu - ia(\sigma)]\psi(\sigma)} \rangle$

•
$$[\sigma] = -1 \Rightarrow [\bar{\psi}, \psi] = 0$$

- ▶ Non-redundant ct-s: $[\bar{\psi}\psi]^k$, k = 1, ..N
- $\psi \to \bar{\psi}, \ \bar{\psi} \to \psi, \ A_{\mu} \to A_{\mu}^* \Rightarrow$ number of ct-s is $\left[\frac{N}{2}\right]$.
- Can make $\frac{1}{d_R}W_R(\mathcal{C}) \leq 1$ for all antisymmetric *R*.
- ► \Rightarrow Q(z, C) is palindromic & all roots on |z| = 1.
- Divergences are linear in 4D and logarithmic in 3D.

Large N transition and a Dirac operator

- ► The [^N/₂] ct-s are necessary to eliminate the [^N/₂] perimeter divergences associated with the distinct *N*-ality representations, not counting conjugate ones.
- Physically, the ct-s represent the arbitrary amounts of thickening the distinct k-strings need.
- On the lattice they are implemented by coarsening (via a continuous version of smearing/cooling/...) the gauge fields the fermions see.
- The spectrum of D₁(C) ≡ ∂_σ − ia(σ) will have a gap for small loops and will be gap-less for large loops.
- There is an analogy to spontaneous chiral symmetry breaking and its connection to chiral random matrix theory.

Surface observable

- Replace the curve by a 2-dimensional surface Σ, described by x_μ(σ). Put massive Dirac fermions on Σ, which is characterized by a single scale *I*.
- At zero mass, one has chiral symmetry and the fermionic determinant is the exponent of the Polyakov-Wiegmann action.
- The gauge connection on Σ is $a_{\alpha} = A_{\mu}(x(\sigma)) \frac{\partial x_{\mu}}{\partial \sigma_{\alpha}}$.
- The massless Dirac operator is $D_2(\Sigma) = \gamma_{\alpha}[\partial_{\sigma_{\alpha}} ia_{\alpha}(\sigma)].$
- $Q(\mu, \Sigma) = \langle \int [d\bar{\psi}d\psi] e^{\int_{\Sigma} d^2\sigma\bar{\psi}(\sigma)[D_2(\Sigma)-\mu]\psi(\sigma)} \rangle$
- Currents: $J^{j}_{\alpha}(\sigma) = \bar{\psi}(\sigma)\gamma_{\alpha}T^{j}\psi(\sigma), J_{\alpha} = \bar{\psi}(\sigma)\gamma_{\alpha}\psi(\sigma).$
- Only two ct-s are $\mathcal{L}_1 = J_{\alpha}^j J_{\alpha}^j$, $\mathcal{L}_2 = J_{\alpha} J_{\alpha}$.
- At $N = \infty$ a S χ SB transition is possible, depending on *I*.
- ► In 4D one has logarithmic divergences, and L₁ will be generated, but in 3D no ct-s are generated because the theory is superrenormalizable.

Results in 3D

- ▶ No renormalization necessary; set $\mu = 0$ and $N = \infty$.
- For Σ an infinite plane: $\langle \bar{\psi}\psi \rangle_{N=\infty} = 0.29(1)\sqrt{\sigma_f}$
- For Σ a cylinder with square base of side s: spontaneous chiral symmetry breaking at s > s_c and preserved chiral symmetry for s < s_c.
- For $s > s_c$ with $(s s_c)/s_c \ll 1$ we have $\langle \bar{\psi}\psi \rangle_{N=\infty} \propto (s s_c)^{1/2}$
- $s_c = 1.4(1)/\sqrt{\sigma_f}$

Outlook

- Generalize to 4D.
- Find analytical ways to get $\langle \bar{\psi}\psi \rangle$ and s_c in 3D.

