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Introduction

At N =∞ SU(N) pure YM simplifies, but this has not yet been
turned into a quantitative tool. Our objective is to change this
state of affairs.
Let O be an observable characterized by one single scale l .
For lΛN � 1, 〈O〉N=∞ can be computed by summing up
contributions from planar Feyman diagrams. Moreover, there
are good reasons to believe that the series in 1

log(lΛN ) converges.
For lΛN � 1, for a class of specific O’s, 〈O〉N=∞ can be
expanded in 1

lΛN
using an effective theory based on free strings.

How are the two regimes connected ?
Some O’s have a narrow crossover as l changes from lΛN < 1
to lΛN > 1 at finite N, becoming a “phase transition” at N =∞.
Such large N phase transitions tend to fall in Random Matrix
universality classes. The hope is to exploit this to connect field
theoretical perturbation theory to effective string theory.
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Wilson loop operator - ignoring renormalization

I Pei
∮
C AR ·dx ≡ ΩR(C), R = SU(N)-representation.

WR(C) = tr〈ΩR(C)〉/dR are Wilson loops.
I Restrict to totally antisymmetric representations,

R = k ,N − k ; k = 1, ...,
[N

2

]
. The generating function for

the Wk is 〈det(z + Ωf (C))〉 = Q(z, C), a palindromic
polynomial of rank N in z.

I As N →∞ a continuum density of roots of Q(z, C)
develops, supported on |z| = 1, gapped at z = 1 for small
loops, and uniform for infinite loops.

I As the loop C is dilated, its minimal area A grows and one
can extract k -string tensions σk from Wk (C) ∼ exp(−σkA).
Hence, for very large loops the deviation of the density
from uniformity is controlled by [N/2] exponents e−σk A,
dominated by e−σf A.
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Large N phase transition

I Separates small from large loops and occurs in D=2,3,4.
I Close to critical loop-size, and for z close to 1, there is a

universal description common to all dimensions.
I The case D = 2 is exactly soluble so universal form is

known.
I This “phase transition” is seen only in Q(z, C), but not in

the individual Wk ’s.
I The universality provides an economic parametrization of

the short-scale to long-scale crossover in Q(z, C) for
1� N <∞.

I For this to be meaningful, need to renormalize Q(z, C).
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Renormalization of Wilson loops
I Q(z, C) = 〈det(1 + zΩ†f (C))〉.

I det[1 + zΩ†f (C)] =
∫

[dψ̄dψ]e
∫ l

0 dσψ̄(σ)[∂σ−µ−ia(σ)]ψ(σ).

I z = e−µl , σ parametrizes C by x(σ), [∂σxµ(σ)]2 = 1.
I l is the length of C.
I ψ̄(σ), ψ(σ) obey a.p.b.c.

I a(σ) = Aµ(x(σ))
∂xµ(σ)

dσ .

I Q(z, C) = 〈
∫

[dψ̄dψ]e
∫ l

0 dσψ̄(σ)[∂σ−µ−ia(σ)]ψ(σ)〉
I [σ] = −1⇒ [ψ̄, ψ] = 0
I Non-redundant ct-s: [ψ̄ψ]k , k = 1, ..N
I ψ → ψ̄, ψ̄ → ψ, Aµ → A∗µ ⇒ number of ct-s is

[N
2

]
.

I Can make 1
dR

WR(C) ≤ 1 for all antisymmetric R.
I ⇒ Q(z, C) is palindromic & all roots on |z| = 1.
I Divergences are linear in 4D and logarithmic in 3D.
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Large N transition and a Dirac operator

I The
[N

2

]
ct-s are necessary to eliminate the

[N
2

]
perimeter

divergences associated with the distinct N-ality
representations, not counting conjugate ones.

I Physically, the ct-s represent the arbitrary amounts of
thickening the distinct k -strings need.

I On the lattice they are implemented by coarsening (via a
continuous version of smearing/cooling/...) the gauge fields
the fermions see.

I The spectrum of D1(C) ≡ ∂σ − ia(σ) will have a gap for
small loops and will be gap-less for large loops.

I There is an analogy to spontaneous chiral symmetry
breaking and its connection to chiral random matrix theory.
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Surface observable
I Replace the curve by a 2-dimensional surface Σ, described

by xµ(σ). Put massive Dirac fermions on Σ, which is
characterized by a single scale l .

I At zero mass, one has chiral symmetry and the fermionic
determinant is the exponent of the Polyakov-Wiegmann
action.

I The gauge connection on Σ is aα = Aµ(x(σ))
∂xµ
∂σα

.
I The massless Dirac operator is D2(Σ) = γα[∂σα − iaα(σ)].
I Q(µ,Σ) = 〈

∫
[dψ̄dψ]e

∫
Σ d2σψ̄(σ)[D2(Σ)−µ]ψ(σ)〉

I Currents: J j
α(σ) = ψ̄(σ)γαT jψ(σ), Jα = ψ̄(σ)γαψ(σ).

I Only two ct-s are L1 = J j
αJ j

α, L2 = JαJα.
I At N =∞ a SχSB transition is possible, depending on l .
I In 4D one has logarithmic divergences, and L1 will be

generated, but in 3D no ct-s are generated because the
theory is superrenormalizable.

From loops to surfaces 8/10 ,



Results in 3D

I No renormalization necessary; set µ = 0 and N =∞.
I For Σ an infinite plane: 〈ψ̄ψ〉N=∞ = 0.29(1)

√
σf

I For Σ a cylinder with square base of side s: spontaneous
chiral symmetry breaking at s > sc and preserved chiral
symmetry for s < sc .

I For s > sc with (s − sc)/sc � 1 we have
〈ψ̄ψ〉N=∞ ∝ (s − sc)1/2

I sc = 1.4(1)/
√
σf
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Outlook
I Generalize to 4D.
I Find analytical ways to get 〈ψ̄ψ〉 and sc in 3D.
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