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Content of the talk

e Losing conformality=confinement=complex fixed points (Kaplan et al. )
e New picture: Fisher's zeros as boundary and gates for complex RG flows
e 2D O(N) nonlinear sigma models

e Ising Hierarchical model (D= 2 and 3)

e Fisher's zeros in U(1) and SU(2) LGT

e Conclusions

Outline in arXiv:1005.1993; PRL 104 or 105 (in press)



Conformality versus Confinement
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Figure 1: By reducing the constant term in a quadratic § function, the
IR and UV fixed points merge and disappear in the complex plane, a mass
gap is created, conformality is replaced by confinement (Kaplan, Son and

Stephanov, PRD380)



Fisher’'s zeros as “gates” for complex RG flows

e Motivated by KSS observation, we studied complex extensions of RG
flows in asymptotically free models where the weakly coupled flows reach
the strongly coupled fixed point.

e We considered modifications or deformations that may affect that
behavior (finite volume, change of dimension, additional pieces in the
action).

e In all cases, the Fisher's zeros (of the partition function) seem to govern
the global behavior of the flows near the real axis. It is plausible that in
the infinite volume limit, these zeros delimit the boundary of the basin
of attraction of the strongly coupled fixed point. For confining models,
a ‘‘gate’ remains open.



Models Considered

e 2D O(N) non-linear sigma models in the large N limit.
e Ising hierarchical model D = 2 (no transition!) and 3 (usual Wilson
fixed point). The probability distribution for the total spin in blocks of

any size can be calculated exactly.

e U(1) and SU(2) 4D LGT (zeros at diferent volume; no RG flows yet).

e Models with fermions, in progress.

Note: at finite volume, these models have partition functions analytical in
the entire complex 3 plane.



2D O(N) non-linear sigma model

Z — fH dN¢X5(¢?X¢?X - 1)6_(1/98) Zx,e(]‘_qu-qu—l—e)

— Mgap
Notations: 3 = QN) (inverse 't Hooft coupling), M = NI

2 1
Large N: p(M?) = ["_|”, (271')22(2 cos (k1) —cos(kg) )+ M2

Infinite volume, small coupling (AF): 8(M?) ~ 1/(4w) In(1/M?)

Complex RG I: myq, = ee® (small circle around 0), Ayy — Ay /b



O(N) RG flows (infinite L)
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Figure 2: Infinite L RG flows (arrows). The blending blue crosses are the (3

images of two lines of points located very close above and below the [—8, 0]
cut of 3(M?) in the M? plane.
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O(N) RG flows (L=32)
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Figure 3: Same procedure and initial conditions but for L = 32. 3(M?) is
now a rational function; the crosses are the images of the singular points.
The image of the two singular points closest to 0 appear as two large filled
circles. 7



Complex RG Il: Two-lattice matching

We consider the sums of the spins in four L/2 x L/2 blocks B; NB is a
nearest neighbor block of B. We define (possibly by reweighting):

. (Cren @) (Syens b)), |

(Cocn ) (Syendn))

B

A discrete RG transformation mapping 3 into 3’ while the lattice spacing
changes from a to 2a is obtained by matching: R(G,L) = R(6',L/2).

Search with Newton's method: ambiguity= |0 — Beiosest|/|0 — P2d.closest]
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Figure 4. Complex RG flows L = 4; Color scale :-Ln(ambiguity)



Hierarchical Model

HM matching n=4 and n=5
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Figure 5: Unambiguous RG flows for the hierarchical model in the complex
B = 1/kT plane obtained by the two lattice method. The crosses and open
boxes are at the Fisher's zeros for 2* and 2° sites.



RG flows

Zeros n=4
4 Zeros n=5

Figure 6: RG flows for the D = 2 hierarchical model in the complex 3 plane
obtained by the two lattice method. Circles and triangles are at the Fisher's
zeros for 2% and 2° sites. Darker=more ambiguous. 11



D=3,n=3 vs n=4

RG flows
Zeros n=3
4 Zeros n=4

Figure 7: RG flows for the D = 3 hierarchical model in the complex 3 plane
obtained by the two lattice method. Circles and triangles are at the Fisher's
zeros for 23 and 24 sites. Darker=more ambiguous. 12
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Figure 8: Imaginary part of the lowest Fisher's zero for the D = 3

hierarchical model for 2" sites (the zeros pinch the real axis).
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Fisher’s zeros in 4D LGT

Spectral decomposition: Z = fosmax dSn(S)e P

n(S) : density of states; N: number of plaquettes.

n(S)e NS = N (f(9)=B5) = N (f(s0)+(1/2)F"(s0)(s=50)"+...)
with s = S/N and f'(sg) = 3. f(s) is a color entropy density.

If Ref"”(sg) < 0, the distribution becomes Gaussian in the infinite volume.
Gaussian distributions have no complex zeros. The level curve Ref”(sg) = 0
is the boundary of the region where Fisher's zeros may appear.

In the U (1) case, conjugate pairs pinch the real axis, but for SU(2) a finite
gap remains present.
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These pictures suggest that Fisher's zeros should appear on approximately
vertical linear structures. This is confirmed numerically.

For U(1), naive histogram reweighting works well. §Z can be estimated
from (n;(S) — < n(S) >), where 7 is an index for independent runs. Zeros
can be excluded if [6Z| << |Z].

For SU(2), the imaginary part of Fisher's zeros are too large to use
simple reweighting methods. By using Chebyshev interpolation for f(s) and
monitoring the numerical stability of the integrals with the residue theorem,
it is possible to obtain reasonably stable results. Unlike the U(1) case,
the imaginary part of the lowest zeros does not decrease as the volume
increases, but their linear density increases at a rate compatible with L.

16



Im3

uw 4 *In| dziz|
0.1 EREREREREREE ]

0.08

0.06

0.04

0.02

0.97 0975 0.98 0.985
Ref3

Figure 10: |60Z/Z| for U(1) on 4%,
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Figure 11: Zeros of the Re (blue) and Im (red) part of Z for U(1) using
the density of states for 4*.
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Figure 12: Same figures for a 6* lattice.
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U(1) zeros
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Figure 13: Images of the zeros of f”(s) in the 3 plane (open symbols)
and Fisher's zeros (filled symbols) for U (1) on 4% (squares) and 6* (circles)
lattices.
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SU(2) zeros
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Figure 14: Images of the zeros of f”(s) in the 3 plane (open symbols) and
Fisher's zeros (filled symbols) for SU(2) on 4% (squares) and 6% (circles)

lattices.
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SU(2) Adj B,=0.5 v=4*

1T 1 1 IIII|IIII|IIII|.L

[ L=4 """ =0 O i
0.5_— L=4 res. | ]

- - -

0.4 —

B n "

B L I ]

@ 03__ O - u __
E B [ DZ
0.2 u L] _

N . i

N O . i
0.1 (1.766, 0. 087)m -

N O i

O IIII|IIII|IIII|IIII|I

1.2 1.4 1.6 1.8 2

Re( )

Figure 15: Effect of an adjoint term (40.5), the lowest zero goes down by
about 40 percent.
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Conclusions

It is possible to extend various RG flows to the complex 3 plane.

When the size of the system is comparable to the Compton wavelength

of the gap, there is a strong scheme dependence.
Fisher's zeros control the global behavior of the RG flows.

Confinement="open gate”.
Plans: QED, SU(3) with various Ny.

Thanks!
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