Semileptonic decays of K and D mesons in 2+1 flavor QCD

Elvira Gámiz for FNAL/MILC collaboration

🛟 Fermilab

Fermi National Accelerator Laboratory

The XXVIII International Symposium on Lattice Field Theory

· Villasimius, Sardinia, Italy, June 15 (2010) ·

Extraction of CKM matrix elements

$$\frac{d}{dq^2}\Gamma(P_1 \to P_2 l\nu) \propto |V_{ab}|^2 |f_+^{P_1 \to P_2}(q^2)|^2 \qquad q = p_{P_2} - p_{P_1}$$

Extraction of CKM matrix elements

$$\frac{d}{dq^2}\Gamma(P_1 \to P_2 l\nu) \propto |V_{ab}|^2 |f_+^{P_1 \to P_2}(q^2)|^2 \qquad q = p_{P_2} - p_{P_1}$$

CLEO-c, Besson et al PRD80 (2009)

 $|V_{cs}|f_{+}(0)^{D \to K} = 0.719(\pm 0.8\% \pm 0.7\%)$ $|V_{cd}|f_{+}(0)^{D \to \pi} = 0.150(\pm 3\% \pm 0.7\%)$

Aubin et al. PRL94(2005)

 $f_{+}(0)^{D \to K, latt}$: 11% error $f_{+}(0)^{D \to \pi, latt}$: 10% error

BaBar, Aubert et al PRD76 (2007)

 $|V_{cs}|f_{+}(0)^{D \to K} = 0.717(\pm 0.8\% \pm 0.7 \pm 0.7\%)$ (last error from $B(D^{0} \to K^{-}\pi^{+})$)

- * For D decays error in $|V_{cj}|$ dominated by lattice errors
- * Testing lattice QCD: shape of the form factors

Extraction of CKM matrix elements

$$\frac{d}{dq^2}\Gamma(P_1 \to P_2 l\nu) \propto |V_{ab}|^2 |f_+^{P_1 \to P_2}(q^2)|^2 \qquad q = p_{P_2} - p_{P_1}$$

CLEO-c, Besson et al PRD80 (2009) $|V_{cs}|f_{+}(0)^{D \to K} = 0.719(\pm 0.8\% \pm 0.7\%)$

 $|V_{cd}|f_{+}(0)^{D \to \pi} = 0.150(\pm 3\% \pm 0.7\%)$

Aubin et al. PRL94(2005)

 $f_{+}(0)^{D \to K, latt}$: 11% error $f_{+}(0)^{D \to \pi, latt}$: 10% error

BaBar, Aubert et al PRD76 (2007)

 $|V_{cs}|f_{+}(0)^{D \to K} = 0.717(\pm 0.8\% \pm 0.7 \pm 0.7\%)$ (last error from $B(D^{0} \to K^{-}\pi^{+})$)

- * For D decays error in $|V_{cj}|$ dominated by lattice errors
- * Testing lattice QCD: shape of the form factors

Experimental average, Antonelli et al. (Flavianet), arXiv:1005.2323

 $|V_{us}| f_{+}(0)^{K \to \pi} = 0.2163(\pm 0.23\%)$ $f_{+}(0)^{K \to \pi, latt} : 0.6\%$ error

* Check unitarity in the first row of CKM matrix.

 $\Delta_{CKM} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0001(6)$ M. Antonelli et al, arXiv:1005.2323

fits to K_{l3}, K_{l2} exper. data and lattice results for $f_+(0)^{K \to \pi}$ and $f_K/f_{\pi} \to \mathcal{O}(10 \text{ TeV})$ bound on the scale of new physics.

2. $D \rightarrow \pi$: Extraction of $|V_{cd}|$

Validate method in D sem. decays

 \rightarrow use same method for other processes like $B \rightarrow \pi l \nu$ or $B \rightarrow K l \bar{l}$

2. $D \rightarrow \pi$: Extraction of $|V_{cd}|$

Validate method in D sem. decays

 \rightarrow use same method for other processes like $B \rightarrow \pi l \nu$ or $B \rightarrow K l \bar{l}$

$$egin{aligned} &\langle P|V^{\mu}|D
angle &= f_{+}(q^{2})\left[p_{D}^{\mu}+p_{P}^{\mu}-rac{m_{D}^{2}-m_{P}^{2}}{q^{2}}q^{\mu}
ight] \ &+f_{0}(q^{2})rac{m_{D}^{2}-m_{P}^{2}}{q^{2}}q^{\mu} \end{aligned}$$

* Work on *D* rest frame

2. $D \rightarrow \pi$: Extraction of $|V_{cd}|$

Validate method in D sem. decays

 \rightarrow use same method for other processes like $B \rightarrow \pi l \nu$ or $B \rightarrow K l l$

$$egin{aligned} P|V^{\mu}|D
angle &= f_{+}(q^{2})\left[p_{D}^{\mu}+p_{P}^{\mu}-rac{m_{D}^{2}-m_{P}^{2}}{q^{2}}q^{\mu}
ight] \ &+f_{0}(q^{2})rac{m_{D}^{2}-m_{P}^{2}}{q^{2}}q^{\mu} \end{aligned}$$

* Work on *D* rest frame

A more convenient choice of parameters is

$$\langle P|V_{\mu}|D\rangle = \sqrt{2m_D} \left[v_{\mu} \boldsymbol{f}_{\parallel}^{\boldsymbol{D} \to \boldsymbol{P}}(q^2) + p_{\perp \mu} \boldsymbol{f}_{\perp}^{\boldsymbol{D} \to \boldsymbol{P}}(q^2) \right]$$

with $f_{\parallel}^{D \to P}(q^2) = \frac{\langle \pi | \mathcal{V}^0 | D \rangle}{\sqrt{2m_D}}$ and $f_{\perp}^{D \to P}(q^2) = \frac{\langle \pi | \mathcal{V}^i | D \rangle}{\sqrt{2m_D}} \frac{1}{p_{\pi}^i}$ (D rest frame)

Sea quarks: $N_f = 2 + 1$ MILC configurations with improved staggered Asqtad u, d and s sea quarks, and improved glue

* Asqtad: Tree-level order a^2 effects removed

 \rightarrow leading errors are $\mathcal{O}(\alpha_s a) \mathcal{O}(a^4)$

Naik, NPB 1989; Lepage, PRD 1999; Bernard et al, PRD 1998

* One-loop Symanzik-improved gauge action: Weisz, NPB 1983; Curci et al., PLB 1983; Weisz and Wohlert, NPB 1984; Luscher and Weisz, PLB and CMP 1985;
 Alford et al., PLB 1995; Bernard et al., PRD 1998

Sea quarks: $N_f = 2 + 1$ MILC configurations with improved staggered Asqtad u, d and s sea quarks, and improved glue

* Asqtad: Tree-level order a^2 effects removed

 \rightarrow leading errors are $\mathcal{O}(\alpha_s a) \mathcal{O}(a^4)$

Naik, NPB 1989; Lepage, PRD 1999; Bernard et al, PRD 1998

* One-loop Symanzik-improved gauge action: Weisz, NPB 1983; Curci et al., PLB 1983; Weisz and Wohlert, NPB 1984; Luscher and Weisz, PLB and CMP 1985;
 Alford et al., PLB 1995; Bernard et al., PRD 1998

Valence c: Fermilab action EI-Khadra et al, PRD 1997

* Fermilab action: Clover with Fermilab interpretation via HQET

** Tune hopping parameter and clover coefficient to eliminate discretization effects through NLO

Sea quarks: $N_f = 2 + 1$ MILC configurations with improved staggered Asqtad u, d and s sea quarks, and improved glue

* Asqtad: Tree-level order a^2 effects removed

 \rightarrow leading errors are $\mathcal{O}(\alpha_s a) \mathcal{O}(a^4)$

Naik, NPB 1989; Lepage, PRD 1999; Bernard et al, PRD 1998

* One-loop Symanzik-improved gauge action: Weisz, NPB 1983; Curci et al., PLB 1983; Weisz and Wohlert, NPB 1984; Luscher and Weisz, PLB and CMP 1985;
 Alford et al., PLB 1995; Bernard et al., PRD 1998

Valence c: Fermilab action EI-Khadra et al, PRD 1997

* Fermilab action: Clover with Fermilab interpretation via HQET

** Tune hopping parameter and clover coefficient to eliminate discretization effects through NLO

Valence light quarks: Asqtad action.

Improved vector currents.

* Rotate heavy quark field to remove $O(1/m_c)$ errors:

$$\psi_c \rightarrow \Psi_c = \left(1 + ad_1 \vec{\gamma} \cdot \vec{D}_{lat}\right) \psi_c$$

****** d_1 its fixed to its tadpole-improved tree-level value.

Improved vector currents.

* Rotate heavy quark field to remove $\mathcal{O}(1/m_c)$ errors:

$$\psi_c \rightarrow \Psi_c = \left(1 + ad_1 \vec{\gamma} \cdot \vec{D}_{lat}\right) \psi_c$$

** d_1 its fixed to its tadpole-improved tree-level value. # Renormalization: Partially non-perturbative.

$$Z_{V_{\mu}}^{hl} = \rho_{V_{\mu}}^{hl} \sqrt{Z_V^{hh} Z_V^{ll}}$$

* Z_V^{hh} and Z_V^{ll} determined non-perturbatively * $\rho_{V\mu}^{hl}$ perturbative correction (one-loop). Small correction.

2.1 Simulation details: Parameters

	pprox a (fm)	am_l/am_s	Volume	N_{conf}	$am_l^{ m valence}$
coarse	0.12	0.02/0.05	$20^3 imes 64$	2052	$0.005, \ 0.007, \ 0.01,$
		0.01/0.05	$20^3 \times 64$	2259	$0.02, \ 0.03, \ 0.0415,$
		0.007/0.05	$20^3 \times 64$	2110	$0.05; \ 0.0349$
		0.005/0.05	$24^3 imes 64$	2099	
fine	0.09	0.0124/0.031	$28^3 imes 96$	1996	$0.0031, \ 0.0047, \ 0.0062,$
		0.0062/0.031	$28^3 imes 96$	1946	$0.0093, \ 0.0124, \ 0.031;$
		0.00465/0.031	$32^3 \times 96$	983	0.0261
		0.0031/0.031	$40^3 \times 96$	1015	
superfine	0.06	0.0072/0.018	$48^3 \times 144$	593	$0.0036, \ 0.0072, \ 0.0018,$
		0.0036/0.018	$48^3 \times 144$	668	$0.0025, \ 0.0054, \ 0.0160;$
		0.0025/0.018	$56^3 \times 144$	800	0.0188
		0.0018/0.018	$64^3 \times 144$	826	

* Valence charm quark mass: tuned to physical value

* Current analysis:
$$m_l^{\text{valence}} = m_l^{\text{sea}}$$

2.2 Correlation functions

Generate 3-point and 2-point correlation functions

$$C_{3,\mu}^{D \to \pi}(t,T;\vec{p}_{\pi}) = \sum_{\vec{x},\vec{y}} e^{i\vec{p}_{\pi}\cdot\vec{y}} \langle \mathcal{O}_{\pi}(t_{source},\vec{0})V_{\mu}(t,\vec{y})\mathcal{O}_{D}^{\dagger}(T,\vec{x}) \rangle$$
$$C_{2}^{\pi}(t;\vec{p}_{\pi}) = \sum_{\vec{x}} e^{i\vec{p}_{\pi}\cdot\vec{x}} \langle \mathcal{O}_{\pi}(t_{source},\vec{0})\mathcal{O}_{\pi}^{\dagger}(t,\vec{x}) \rangle$$
$$C_{2}^{D}(t) = \sum_{\vec{x}} \langle \mathcal{O}_{D}(t_{source},\vec{0})\mathcal{O}_{D}^{\dagger}(t,\vec{x}) \rangle$$

* D rest frame: $\vec{p}_{\pi} = (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0).$

- * Randomizing spatial location of the sources → decreases autocorrelations.
- * Smearing: D-meson interpolating operators are smeared with a 1S charmoniun wavefunction.

2.2 Correlation functions

Generate 3-point and 2-point correlation functions

$$C_{3,\mu}^{D \to \pi}(t,T;\vec{p}_{\pi}) = \sum_{\vec{x},\vec{y}} e^{i\vec{p}_{\pi}\cdot\vec{y}} \langle \mathcal{O}_{\pi}(t_{source},\vec{0})V_{\mu}(t,\vec{y})\mathcal{O}_{D}^{\dagger}(T,\vec{x}) \rangle$$
$$C_{2}^{\pi}(t;\vec{p}_{\pi}) = \sum_{\vec{x}} e^{i\vec{p}_{\pi}\cdot\vec{x}} \langle \mathcal{O}_{\pi}(t_{source},\vec{0})\mathcal{O}_{\pi}^{\dagger}(t,\vec{x}) \rangle$$
$$C_{2}^{D}(t) = \sum_{\vec{x}} \langle \mathcal{O}_{D}(t_{source},\vec{0})\mathcal{O}_{D}^{\dagger}(t,\vec{x}) \rangle$$

* D rest frame: $\vec{p}_{\pi} = (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0).$

- * Randomizing spatial location of the sources → decreases autocorrelations.
- * Smearing: D-meson interpolating operators are smeared with a 1S charmoniun wavefunction.
- # Build combinations of $C_3^{D \to \pi}(t,T)$ and $C_3^{D \to \pi}(t,T+1)$ to suppress contributions from opposite parity (staggered artifacts) and excited states

 \rightarrow fit to a plateau or plateau + dominant oscillating contamination

Partially-quenched heavy-meson staggered ChPT Aubin & Bernard, PRD76(2007)
 * Use complete NLO + analytic NNLO expressions.

$$\begin{split} f_{\parallel} &= \frac{c_0}{f_{\pi}} \Big[1 + \log s + c_1 m_l + c_2 E_{\pi} + c_3 (E_{\pi})^2 + c_4 a^2 + \text{NNLO analy. terms} \Big] \\ f_{\perp} &= \frac{c'_0 g_{\pi}}{f_{\pi}} \Big\{ \frac{1}{E_{\pi} + \Delta_l^* + \log s} + \frac{1}{E_{\pi} + \Delta_l^*} \Big[\log s + c'_1 m_l + c'_2 E_{\pi} \\ &+ c'_3 (E_{\pi})^2 + c'_4 a^2 + \text{NNLO analy. terms} \Big] \end{split}$$

** No sea quark mass dependence is included $(m_s^{sea} \text{ similar in all ensembles and } m_l^{val.} = m_l^{sea})$

****** No a^4 term is included (only two lattice spacings).

****** logs are known non-analytical functions of $m_{K,\pi}$ containing dominant taste-breaking effects

 \rightarrow remove the dominant light discretization errors

* Checks: extrapolated results for f_+ quite insensitive to NNNLO corrections

- * Checks: extrapolated results for f_+ quite insensitive to NNNLO corrections
- * Future plan: Include also heavy-quark discretization errors from the action and the current to improve errors estimates
 - ** Corrections given by higher order operators in the HQET expansion. Known functions of am_c included in the fits with $\mathcal{O}(1)$ coefficients to be determined by the fit.
 - → incorporates power counting fixing hadronic scales more systematically

Preliminary results

ChPT not reliable for $\chi_{\pi} = \frac{\sqrt{2}E_{\pi}}{4\pi f_{\pi}} > 1 \rightarrow \vec{p}_{\pi} = (1, 1, 1), (2, 0, 0)$ not used in the fits.

$\rho_{V_{\mu}}^{hl}$ factors not included yet in the renormalization.

2.4 Comparison with experimental data

Preliminary results

Statistical errors for $f_+(0.15 \text{GeV}^2)^{D \to \pi}$: $\simeq 5\%$

2.4 Comparison with experimental data

Preliminary results

Statistical errors for $f_+(0.15 \text{GeV}^2)^{D \to \pi}$: $\simeq 5\%$

Plan: Use z-expansion to extract $|V_{ud}|$ in a model-independent way from a simultaneous fit of lattice and experimental data over q^2 z-expansion based on unitarity, analyticity, crossing symmetry, and heavy-quark symmetry

3.1. $K \rightarrow \pi l \nu$: Methodology

HPQCD method for semileptonic decays (see H. Na talk) * In the continuum, the Ward identity $(S = \overline{ds})$

$$q^{\mu} \langle \pi | V_{\mu}^{cont.} | K \rangle = (m_s - m_q) \langle \pi | S^{cont} | K \rangle$$

relates matrix elements of vector and scalar currents.

3.1. $K \rightarrow \pi l \nu$: Methodology

HPQCD method for semileptonic decays (see H. Na talk) * In the continuum, the Ward identity $(S = \overline{ds})$

$$q^{\mu}\langle \pi | V_{\mu}^{cont.} | K \rangle = (m_s - m_q) \langle \pi | S^{cont} | K \rangle$$

relates matrix elements of vector and scalar currents. In the lattice

$$q^{\mu} \langle \pi | V_{\mu}^{lat.} | K \rangle Z = (m_s - m_q) \langle \pi | S^{lat.} | K \rangle$$

Using it together with

$$\langle \pi | V^{\mu} | K \rangle = f_{+}(q^{2}) \left[p_{K}^{\mu} + p_{\pi}^{\mu} - \frac{m_{K}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu} \right] + f_{0}(q^{2}) \frac{m_{K}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu}$$

 \rightarrow substitute the 3-point function with a V_{μ} insertion by a 3-point function with a S insertion

$$f_0(q^2) = \frac{m_s - m_q}{m_K^2 - m_\pi^2} \langle \pi | S | K \rangle_{q^2}$$

3.1. $K \rightarrow \pi l \nu$: Methodology

HPQCD method for semileptonic decays (see H. Na talk) * In the continuum, the Ward identity $(S = \overline{ds})$

$$q^{\mu}\langle \pi | V_{\mu}^{cont.} | K \rangle = (m_s - m_q) \langle \pi | S^{cont} | K \rangle$$

relates matrix elements of vector and scalar currents. In the lattice

$$q^{\mu} \langle \pi | V_{\mu}^{lat.} | K \rangle Z = (m_s - m_q) \langle \pi | S^{lat.} | K \rangle$$

Using it together with

$$\langle \pi | V^{\mu} | K \rangle = f_{+}(q^{2}) \left[p_{K}^{\mu} + p_{\pi}^{\mu} - \frac{m_{K}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu} \right] + f_{0}(q^{2}) \frac{m_{K}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu}$$

 \rightarrow substitute the 3-point function with a V_{μ} insertion by a 3-point function with a S insertion

$$f_0(q^2) = \frac{m_s - m_q}{m_K^2 - m_\pi^2} \langle \pi | S | K \rangle_{q^2} \implies f_+(0) = f_0(0) = \frac{m_s - m_q}{m_K^2 - m_\pi^2} \langle S \rangle_{q^2 = 0}$$

3.1. Methodology

- # Advantages of the method:
 - * No need of renormalization factors Z.
 - * Need less inversions than the traditional double ratio method.
 - * S currents used are local.

3.1. Methodology

- # Advantages of the method:
 - * No need of renormalization factors Z.
 - * Need less inversions than the traditional double ratio method.
 - * S currents used are local.
- # Downside: can get $f_+(q^2)$ only at $q^2 = 0$.

Sea quarks: $N_f = 2 + 1$ MILC configurations with improved staggered Asqtad u, d and s sea quarks, and improved glue

Valence quarks: Hisq action E. Follana et al, HPQCD coll., Phys.Rev.D75 (2007)

* No tree level a^2 errors (Asqtad). Highly reduce $\mathcal{O}(a^2\alpha_s)$ errors.

Sea quarks: $N_f = 2 + 1$ MILC configurations with improved staggered Asqtad u, d and s sea quarks, and improved glue

Valence quarks: Hisq action E. Follana et al, HPQCD coll., Phys.Rev.D75 (2007)

* No tree level a^2 errors (Asqtad). Highly reduce $\mathcal{O}(a^2\alpha_s)$ errors.

 * Random wall sources: reduce stat. errors by a factor of 2-3.

Sea quarks: $N_f = 2 + 1$ MILC configurations with improved staggered Asqtad u, d and s sea quarks, and improved glue

Valence quarks: Hisq action E. Follana et al, HPQCD coll., Phys.Rev.D75 (2007)

* No tree level a^2 errors (Asqtad). Highly reduce $\mathcal{O}(a^2\alpha_s)$ errors.

- * Random wall sources: reduce stat. errors by a factor of 2-3.
- * Twisted boundary conditions: allow to inject arbitrary momentum and simulate at $q^2 = 0$ directly.

** Momentum injected on the K: $\vec{\theta}_0 = \vec{\theta}_2 = 0$, $\vec{\theta}_1 \neq 0$ $\vec{p}_K = \vec{\theta}_1 \frac{\pi}{L}$ ** Momentum injected on the π : $\vec{\theta}_0 = \vec{\theta}_1 = 0$, $\vec{\theta}_2 \neq 0$ $\vec{p}_\pi = \vec{\theta}_2 \frac{\pi}{L}$

pprox a (fm)	am_l^{sea}/am_s^{sea}	N_{conf}	$N_{sources}$	$am_s^{ m valence}$	$am_l^{ m valence}$
0.12	0.010/0.050	592	4	0.0546	0.010
0.09	0.0062/0.031	551	4	0.0366	0.0062

Generate $C_3^{K \to \pi}(t, T; \vec{p}_{\pi/K})$ for T = 18 - 22 for coarse lattice and T = 27 - 30 for fine lattice.

pprox a (fm)	am_l^{sea}/am_s^{sea}	N_{conf}	$N_{sources}$	$am_s^{ m valence}$	$am_l^{ m valence}$
0.12	0.010/0.050	592	4	0.0546	0.010
0.09	0.0062/0.031	551	4	0.0366	0.0062

Generate $C_3^{K \to \pi}(t, T; \vec{p}_{\pi/K})$ for T = 18 - 22 for coarse lattice and T = 27 - 30 for fine lattice.

- **#** Fit combinations of 3-point functions with T = 19 20 for coarse and T = 28 29 for fine, together with corresponding 2-point π and K functions.
 - * Fit to ground state + dominant oscillating for central values of 3-point amplitudes.
 - * Checking stability: Fit to ground state and keeping dependence on oscillating and excited states (up to 4 exponentials).

3.2. Test run: simulating at $q^2 \sim 0$

Dependence of the scalar form factor on q^2

Goal: Eliminate uncertainty in q^2 interpolation (minimum value of $|(r_1q)^2|$ available with periodic boundary conditions is $\simeq -0.104$)

$f_+(q^2 \simeq 0)$ calculated with ~ 0.4% statistical error (momentum in π). 4 times more configurations available! \rightarrow 0.2-0.3% stat. error

3.3. Test run: discretization and sea quark mass effects

Discretization errors: negligible after extrapolation to the continuum.

Sea quark mass effects: negligible after extrapolation to the physical point.

3.4. Future plans: Hisq valence quarks

- # Use full MILC statistics for medium-coarse ($a \simeq 0.15 \ fm$), coarse ($a \simeq 0.12 \ fm$), and fine ($a \simeq 0.09 \ fm$) ensembles.
 - * $N_{conf.} \simeq 2000$ in coarse, $N_{conf.} \simeq 1000 2000$ in fine, and $N_{conf.} \simeq 600$ in medium-coarse.
 - * At least 4 different sea quark masses for coarse, fine, and medium-coarse available.

3.4. Future plans: Hisq valence quarks

- # Use full MILC statistics for medium-coarse $(a \simeq 0.15 \ fm)$, coarse $(a \simeq 0.12 \ fm)$, and fine $(a \simeq 0.09 \ fm)$ ensembles.
 - * $N_{conf.} \simeq 2000$ in coarse, $N_{conf.} \simeq 1000 2000$ in fine, and $N_{conf.} \simeq 600$ in medium-coarse.
 - * At least 4 different sea quark masses for coarse, fine, and medium-coarse available.
- # Use (partially quenched) Staggered ChPT to extrapolate to the continuum and the physical light masses (valence strange mass tuned to the physical one)
 - * NLO $(\mathcal{O}(p^4))$ including taste-changing effects plus NNLO $(\mathcal{O}(p^6))$ continuum ChPT

3.4. Future plans: Hisq valence quarks

- # Use full MILC statistics for medium-coarse $(a \simeq 0.15 \ fm)$, coarse $(a \simeq 0.12 \ fm)$, and fine $(a \simeq 0.09 \ fm)$ ensembles.
 - * $N_{conf.} \simeq 2000$ in coarse, $N_{conf.} \simeq 1000 2000$ in fine, and $N_{conf.} \simeq 600$ in medium-coarse.
 - * At least 4 different sea quark masses for coarse, fine, and medium-coarse available.
- # Use (partially quenched) Staggered ChPT to extrapolate to the continuum and the physical light masses (valence strange mass tuned to the physical one)
 - * NLO $(\mathcal{O}(p^4))$ including taste-changing effects plus NNLO $(\mathcal{O}(p^6))$ continuum ChPT
- **# Statistitical erorrs**: 0.3-0.2%
- **#** Analysis of systematic errors:
 - * Chiral and continuum extrap.: one of the dominant uncertainties
 - * Tuning of bare quark masses
 - * Finite volume effects

4. Conclusions and future prospects

- # $D \rightarrow \pi l \nu$: Complete analysis adding 2 coarse ensembles, 1 fine ensemble, and 1/2 superfine ensembles.
 - * Add $m_l^{val.} \neq m_l^{sea}$: will help especially with f_{\parallel} extrapolation.
 - * Use z-expansion to combine lattice and experimental data.
 - * Updated treatment of correlations **Bernard et al.** PRD80 (2009).
 - * Incorporates known functional forms for higher order heavy-quark discretization effects in the chiral-continuum extrapolation.

4. Conclusions and future prospects

Projected error budget for $f_+(0)^{D \to \pi}$

source	error (%)	comments/improvements
Stat. + χPT	5	better when including $a=0.06~fm$, more $m_l^{\it val}$
$g_{D^*D\pi}$	2.2	=
r_1	1.5	f_{π}
\hat{m}	0.5	m_{π} , m_K
m_s	2.0	=
m_c	0.2	updated κ_c
HQ	3.9	better estimate from chir+cont fits
Z_V	0.7	statist. dominated
ho	0.7	pert. error
$L^3 < \infty$	0.5	ChPT
Sys.	5.3	
Total	7.3	(previous error 11% Aubin et al. PRL94(2005))

4. Conclusions and future prospects

- # $D \rightarrow \pi l \nu$: Complete analysis adding 2 coarse ensembles, 1 fine ensemble, and 1/2 superfine ensembles.
 - * Add $m_l^{val.} \neq m_l^{sea}$: will help especially with f_{\parallel} extrapolation.
 - * Use z-expansion to combine lattice and experimental data.
 - * Updated treatment of correlations Bernard et al. PRD80 (2009).
 - * Incorporates known functional forms for higher order heavy-quark discretization effects in the chiral-continuum extrapolation.

$D \rightarrow K l \nu$. Expect similar errors.

Iterative Super Average

$$\begin{split} \bar{C}_{3pt}^{K \to \pi}(t,T) &= \frac{e^{-E_{\pi}^{(0)}t} e^{-m_{K}^{(0)}(T-t)}}{8} \\ &\times \left[\frac{C_{3pt}^{K \to \pi}(t,T)}{e^{-E_{\pi}^{(0)}t} e^{-m_{K}^{(0)}(T-t)}} + \frac{C_{3pt}^{K \to \pi}(t,T+1)}{e^{-E_{\pi}^{(0)}(t)} e^{-m_{K}^{(0)}(T+1-t)}} \right. \\ &+ \left. \frac{2C_{3pt}^{K \to \pi}(t+1,T)}{e^{-E_{\pi}^{(0)}(t+1)} e^{-m_{K}^{(0)}(T-t-1)}} + \frac{2C_{3pt}^{K \to \pi}(t+1,T+1)}{e^{-E_{\pi}^{(0)}(t+1)} e^{-m_{K}^{(0)}(T-t)}} \right. \\ &+ \left. \frac{C_{3pt}^{K \to \pi}(t+2,T)}{e^{-E_{\pi}^{(0)}(t+2)} e^{-m_{K}^{(0)}(T-t-2)}} + \frac{C_{3pt}^{K \to \pi}(t+2,T+1)}{e^{-E_{\pi}^{(0)}(t+2)} e^{-m_{K}^{(0)}(T-t-1)}} \right] \\ &\approx A_{\mu}^{00} e^{-E_{\pi}^{(0)}t} e^{-m_{K}^{(0)}(T-t)} \\ &+ \left. (-1)^{T} A_{\mu}^{11} e^{-E_{\pi}^{(1)}t} e^{-m_{K}^{(1)}(T-t)} \left(\frac{\Delta m_{K}}{2} \right) \right. \\ &+ \left. \mathcal{O}(\Delta E_{\pi}^{2}, \Delta E_{\pi} \Delta m_{K}, \Delta m_{K}^{2}) \end{split}$$

$K \rightarrow \pi l \nu$: extraction of $|V_{us}|$

$K \rightarrow \pi l \nu$: extraction of $|V_{us}|$

Look for new physics effects in the comparison of $|V_{us}|$ from helicity suppressed $K_{\mu 2}$ versus helicity allowed K_{l3}

$$R_{\mu 23} = \left(\frac{f_K/f_\pi}{f_+(0)}\right) \times \text{experim. data on } K_{\mu 2}\pi_{\mu 2} \text{ and } K_{l3}$$

* In the SM $R_{\mu 23} = 1$. Not true for some BSM theories (for example, charged Higgs)

* Current value $R_{\mu 23} = 0.999(7)$, limited by lattice inputs.