The continuum limit of 2+1 flavor DWF ensembles

Chris Kelly

University of Edinburgh for the UKQCD & RBC Collaborations

2010

э

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト …

Introduction

 Previous calculations of 24³ × 64 ensembles-1st 2 + 1*f* dynamical fermion results for -*f*_π, *f*_K, quark masses [arXiv:0804.0473], -*B*_K [arXiv:hep-ph/0702042].

Errors dominated by 4% discretisation error, e.g.

$$egin{array}{rcl} \mathcal{B}_{\mathcal{K}} &=& 0.524 & (10)_{
m stat} & (21)_{a^2} & (19)_{
m other\,sys} \ \mathcal{F}_{\pi} &=& 124 & (4)_{
m stat} & (5)_{a^2} & (5)_{
m other\,sys} & {
m MeV} \end{array}$$

- RBC&UKQCD now have simulations at 2 lattice spacings.
- Continuum limit results now possible.

Lattice Overview

 $24^3 \times 64$, $L_s = 16$, $\beta = 2.13 (a^{-1} \approx 1.73 \text{ GeV})$

- ▶ 2 ensembles (each ~ 200 configs): $am_l = 0.005, 0.01$.
- Fixed am_h = 0.04.
- Lightest unitary $m_{\pi} \sim 330$ MeV, $m_{\pi}L \sim 4.6$
- Datasets over doubled in size since PRL! (Argonne BG/P via SciDAC)
- Reweighting $m_h^{\overline{\mathrm{MS}}}(2\,\mathrm{GeV}) \sim 90\dots 110$ MeV

 $32^3 \times 64$, $L_s = 16$, $\beta = 2.25 (a^{-1} \approx 2.28 \text{ GeV})$

- ▶ 3 ensembles (each ~ 300 configs): $am_l = 0.004, 0.006, 0.008$.
- Fixed am_h = 0.03.
- Lightest unitary $m_\pi \sim 290 {
 m MeV}, \ m_\pi L \sim 4.1$
- Reweighting $m_h^{\overline{\mathrm{MS}}}(2\,\mathrm{GeV}) \sim 90\dots 110$ MeV

The ideal scaling trajectory

- Must define scaling curve $m_{u/d}(\beta)$, $m_s(\beta)$.
- Scaling curve not unique, differ by $\mathcal{O}(a^2)$.
- ► Ideally choose $m_{u/d}(\beta)$, $m_s(\beta)$ s.t. m_{π}/m_{Ω} and m_{κ}/m_{Ω} equal phys. values.
- Back in the real world more precise to 'match' ensembles at simulated masses.
- Decouples ensemble matching from mass extrapolation and experimental input.
- Details [arXiv:0911.1309].

Matching at simulated masses

- CK. presented at Lat2009.
- Find scaling curve m_l(β), m_h(β) that passes through simulated data.
- ► Achieve by finding quark masses s.t. $m_{\pi}^{ll}/m_{\Omega}^{hhh}$ and $m_{K}^{lh}/m_{\Omega}^{hhh}$ same at both β s.
- Use m_{Ω}^{hhh} to find ratio of scales: $R_a = \frac{(am_{\Omega}^{hhh})(32)}{(am_{\Omega}^{hhh})(24)}$
- From quark masses at match point form: $Z_{l} = \frac{1}{R_{a}} \frac{(a\tilde{m}_{l})(32)}{(a\tilde{m}_{l})(24)}, \quad Z_{h} = \frac{1}{R_{a}} \frac{(a\tilde{m}_{h})(32)}{(a\tilde{m}_{h})(24)}$
- $\tilde{m} = m + m_{\rm res}$ is DWF PCAC mass.

What does this mean in practise?

- ▶ Defines m_l(β), m_h(β) s.t. m^{ll}_π, m^{hl}_K and m^{hhh}_Ω at these unphysical masses are artefact free - no cutoff dependence.
- No formal guarantee about other quark masses away from match point.
- Double expansion in a^2 and $\delta m_q = m_q m_{u/d}(\beta)$.
- ▶ Scaling imperfection at nearby masses $\propto \delta m_q \times a^2 \leftarrow \text{ignore.}$

Numerical evidence:

Chiral/continuum extrapolation

- ► Use Z_I and Z_h to relate 24³ quark masses to equivalent 32³ masses.
- Combined chiral/continuum fit over both latt.
- ▶ Double expansion in a^2 , \tilde{m}_q truncate 2^{nd} order terms:

$$A + Ba^2 + C\tilde{m}_q + D\tilde{m}_q a^2 + \dots$$

- Simultaneously fit m_{π} , m_K , f_{π} , f_K and m_{Ω} (B_K separate)
- Match onto continuum:

Find physical m_l , m_h and latt. spacings s.t. predicted m_{π} , m_K and m_{Ω} match physical values.

- Use $R_a = a(32)/a(24)$ from matching analysis.
- Investigate multiple chiral ansatze.

A D > A P > A D > A D > D < D</p>

ChPT ansatze

- NLO SU(2) PQChPT for chiral extrapolation NLO SU(3) not good description of 24³ data.
- Couple kaons as independent heavy fields.
- Add a^2 term for f_{π} and f_K , eg.

$$f_{II} = f \left[1 + c_{f} a^{2} \right] + f \cdot \left\{ \frac{8}{f^{2}} (2l_{4} + l_{5}) \chi_{I} - \frac{\chi_{I}}{8\pi^{2} f^{2}} \log \frac{\chi_{I}}{\Lambda_{\chi}^{2}} \right\}$$

- $\chi_I = 2Bm_I$.
- Fit form for m_{π} and m_K standard.
- Linear form for m_Ω:

$$m_{hhh} = m^{(\Omega)} + m^{(\Omega)} c_{m_{\Omega},m_{I}} \chi_{I}.$$

Also use finite-volume PQChPT to estimate FV errors.

Analytic ansatz

 Also investigate analytic ansatz - Taylor expansion about unphysical quark mass, keep linear terms:

$$m_{xy}^2 = C_0^{m_{\pi}} + C_1^{m_{\pi}} \left(\frac{1}{2} (\tilde{m}_x + \tilde{m}_y) - \tilde{m}^m \right) + C_2^{m_{\pi}} (\tilde{m}_l - \tilde{m}^m) \,,$$

Rewrite as

$$m_{xy}^2 = C_0^{m_\pi} + rac{1}{2} C_1^{m_\pi} (ilde{m}_x + ilde{m}_y) + C_2^{m_\pi} ilde{m}_l \,.$$

Similarly for scale-dependent f_{π} :

$$f_{xy} = C_0^{f_{\pi}}[1+C_f a^2] + \frac{1}{2}C_1^{f_{\pi}}(\tilde{m}_x+\tilde{m}_y) + C_2^{f_{\pi}}\tilde{m}_l.$$

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

m_π partially-quenched fits

▶ Partially-quenched $2m_{xy}^2/(\tilde{m}_x + \tilde{m}_y)$, $32^3 m_l = 0.004$ ensemble: ChPT (left), analytic(right).

- Traditional plot format for enhancing chiral curvature.
- Note: Non-linearity in analytic plot is artefact of plot format.
- Linear analytic fits describe data well.

m_π partially-quenched fits - II

- Analytic appears to describe data over larger range.
- ChPT always seems to break down just beyond \tilde{m}_{x} mass cut.
- Goldstone's theorem
 - \Rightarrow $m_{\pi} = 0$ when valence quarks massless,

$$\Rightarrow \quad C_2^{m_\pi} = 0$$

- Fit gives $C_2^{m_{\pi}} = 0.43(8)$.
- This is OK but indicates curvature <u>must</u> appear somewhere in PQ direction.

m_{π} continuum extrapolation

- Small finite-volume effects.
- Analytic error blows up as allow small constant term in fit form.
- $C_0^{m_{\pi}} = -0.001(1)$ is consistent with Goldstone's theorem.
- Don't even need curvature at present precision.

э

(日)、

- Goldstone's theorem in unitary direction satisfied, need no *χ*-curvature.
- Not satisfied in PQ direction does need χ -curvature.
- Consistency not necessary for extracting quantities at physical quark masses.
- ▶ Not clear where breakdown of analytic behaviour occurs.

f_{π} partially-quenched fits

Partially-quenched f_{xy},
 32³ m_l = 0.004 ensemble: ChPT (left), analytic(right).

- No evidence for chiral curvature in data.
- But no inconsistency between data and chiral form.

э

(日)、

f_{π} continuum extrapolation

- ChPT too low by $\sim 12\%$.
- ► FV effects ~ 2%.
- ► Estimate NNLO effects: NLO² ~ 5 15%. Size consistent with discrepancy
- Try NNLO introduction of significant model dependence necessary to fit data.

э

A D F A B F A B F A B F

f_{π} continuum extrapolation - II

- Analytic borderline consistent $\sim 3 4\%$.
- Analytic extrapolations of data on both latt. consistent with physical point:

- Continuum extrapolation pulls result down.
- ► ChPT finite-β extrapolations not consistent with physical point.

э

Predictions

- Chiral curvature must exist somewhere, but less than NLO ChPT implies for fits to present mass range.
- Need lighter quark masses
 - see R.Mawhinney's talk about new ensembles.
- Chiral extrapolation systematic as diff. of analytic and ChPT-fv.
- Allows for possibility of χ -curvature above physical point.
- Take central value as average of analytic and ChPT+FV results.
- ▶ Use ChPT+FV ChPT to estimate FV effects.
- $f\pi = 122(2)_{\text{stat}}(5)_{\chi}(2)_{\text{FV}}$ MeV.
- $f_K = 147(2)_{\text{stat}}(4)_{\chi}(1)_{\text{FV}}$ MeV.
- $f_K/f_{\pi} = 1.208(8)_{\text{stat}}(23)_{\chi}(14)_{\text{FV}}$ MeV.

Non-perturbative renormalisation

- Quark masses and B_K need renormalisation.
- Previously used RI/MOM NPR scheme.
- 'Exceptional kinematics'- Enhances χ SB at large p^2 :

this is bad!

- ▶ Now use non-exceptional $p_{in} \neq p_{out}$ kinematics.
- 'Symmetric' $p_{in}^2 = p_{out}^2 = q^2$: RI/SMOM schemes.
- Use volume sources
 - greatly improved stat. error.
 - reduces localised source systematics.
- Investigate several SMOM schemes: better estimate truncation err.

Quark masses

- Quark masses already in scheme where $Z_{24} = Z_1$, $Z_{32} = 1$.
- Extrapolate Z_m/Z_l to continuum, renormalise quark masses in continuum limit.
- Sys. error breakdown similar to B_K discuss shortly.
- Results:

$$\begin{array}{lll} m_{u/d}^{\rm MS}(2\,{\rm GeV}) &=& 3.65(20)_{\rm stat}(13)_{\rm sys}(8)_{\rm ren}\,{\rm MeV} \\ m_s^{\rm \overline{MS}}(2\,{\rm GeV}) &=& 97.3(1.4)_{\rm stat}(0.2)_{\rm sys}(2.1)_{\rm ren}\,{\rm MeV} \end{array}$$

B_K

Renormalise B_K in RI/MOM and 4 RI/SMOM schemes - fit to renormalised data. Example:

- $Z_{B_{\kappa}}$ systematics:
 - ▶ *spread O*(4) symmetry breaking under discretisation.
 - slope truncation of perturbative expansion -dominant.
 - χSB residual χ -symmetry breaking.
 - *m_s* non-zero strange mass.
- SMOM(𝑘,𝑘) best described by PT [arXiv:1006.0422] has smallest slope err.
- ► NPR sys err. from $SMOM(q, q) SMOM(\gamma^{\mu}, \gamma^{\mu})$.
- $\blacktriangleright B_{\mathcal{K}}(\overline{\mathrm{MS}}, 2\,\mathrm{GeV}) = 0.546(7)_{\mathrm{stat+spread}}(16)_{\chi}(3)_{FV}(14)_{\mathrm{ren}}.$

Summary and Outlook

- Simultaneous chiral/continuum extrapolation with 2 β s.
- Alternative scaling trajectory running through simulated data.
- ► Analytic, *SU*(2) ChPT(+FV) chiral ansatze.
- Analytic describes data well, but χ-curvature needed in PQ direction - χ-extrap. sys. error to encompass both.
- Quark masses and B_K NPR using multiple RI/SMOM schemes with non-exceptional kinematics.
- ► NPR error dominated by PT truncation.

Immediate future:

- Third sim. using DSDR action:
 - \Rightarrow Additional lattice spacing in cont. extrap.
 - \Rightarrow Lighter pions beat down $\chi\text{-systematic.}$
- NPR with Twisted-BCs:
 - \Rightarrow Remove O(4)-breaking systematic.
 - \Rightarrow Better estimate of PT-truncation errs.

э