Rho decays widths from the lattice Preliminary results from a subset of BMW configurations

Julien Frison
frison@cpt.univ-mrs.fr

Centre de Physique Théorique, Marseille

Lattice 2010 International Symposium

Outline

(1) Introducing the $\pi \pi$ levels

- Basics on avoided crossings
- Lüscher's Formula
- The g-coupling model
(2) Results with single operator
(3) Using two operators
- Generalized Eigenvalue Problem
- Operators and contractions

4 Preliminary results

- Our lattices
- Putting it all together

Basics on avoided crossings

If ρ were not coupled to $\pi \pi$

- m_{ρ} constant up to exponentials,
- $\pi \pi$ are quantified with momenta $2 \pi / L \cdot \vec{n}$,
- For some box sizes, ρ and $\pi \pi$ will cross.

Turning interaction on

- Avoided crossing

- Information on coupling strength
- ρ and $\pi \pi$ fully mix.

Basics on avoided crossings

If ρ were not coupled to $\pi \pi$

- m_{ρ} constant up to exponentials,
- $\pi \pi$ are quantified with momenta $2 \pi / L \cdot \vec{n}$,
- For some box sizes, ρ and $\pi \pi$ will cross.

Turning interaction on

- Avoided crossing

- Information on coupling strength
- ρ and $\pi \pi$ fully mix.

Lüscher's Formula

$\rightarrow A F \frac{1}{1-M F} A^{\prime}$
Interactions move F poles to 1 - MF zeros. See [Kim'05]

Lüscher's Formula

Under the 4π inelastic threshold quantification condition reads (up to exponentially small terms in $m_{\pi} L$) :

$$
\begin{aligned}
& \Phi(q)=n \pi-\delta(q) \\
& q=k L / 2 \pi \quad, \quad \delta \text { is } I=J=1 \text { phase shift } \\
& \Phi=\text { kinematical function of } q \text { only. }
\end{aligned}
$$

The g-coupling model

Why we need a model

- phase shift at each k would cost too much
- need some inter/extrapolations $\left(m_{\text {phys }}, a \rightarrow 0, L \rightarrow \infty, \ldots\right)$

Effective range

$$
\frac{k^{3}}{W} \cot \delta=b\left(k^{2}-k_{\rho}^{2}\right) \quad \text { where } \quad b=-\frac{4 k_{\rho}^{3}}{m_{\rho}^{2} \Gamma_{\rho}}
$$

The g-coupling model(2)

Effective lagrangian

$$
\mathcal{L}_{\text {int }}=g \epsilon_{a b c} \rho_{\mu}^{a} \pi^{b} \partial^{\mu} \pi^{c} \quad \text { gives } \quad \Gamma_{\rho}=\frac{g^{2}}{6 \pi} \cdot \frac{k_{\rho}^{3}}{m_{\rho}^{2}}
$$

experimentally $g \simeq 6.0$

Validity

- Effective lagragian is just $\Gamma \leftrightarrow g$
- Approximations, both empirically good :
- $g \approx c s t$
- Effective range

Results with single operator

A simple formula

$$
m_{\rho}^{2}=W^{2}-\frac{g^{2}}{6 \pi} \frac{k^{3}}{W} \cot \Phi(k L / 2 \pi)
$$

Contradictory needs

- Far away from the crossing no signal for width
- On the crossing, no precise $m_{\rho} \Rightarrow$ no signal for width
- Must compute both mass and crossing size at the same time.

Illustrative results from 6-stout

In combined fits $\delta M_{\rho} \sim 5 \%, g=9.5 \pm 4.6$ (physical value 6.0).

Generalized Eigenvalue Problem

Exact case

If exactly N eigenstates, energies can be computed from a set of N cross-correlators :

$$
C_{i j}=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}(0)|0\rangle=\sum_{n} e^{-E_{n} t}\langle 0| \mathcal{O}_{i}|n\rangle\langle n| \mathcal{O}_{j}|0\rangle
$$

using eigenvalues of the matrix $C(t) C^{-1}\left(t_{0}\right)$

$$
\lambda_{i}=e^{-E_{i}\left(t-t_{0}\right)}
$$

if and only if the operators are linearly independent.

Generalized Eigenvalue Problem(2)

Higher exponentiels

- With N-by- N cross correlators the energies are computed with errors $\exp \left[\left(E_{N}-E_{N+1}\right) t\right], \exp \left[\left(E_{N}-E_{N+1}\right) t_{0}\right]$
- t and t_{0} must be large
- but $t-t_{0}$ can be either small or large

Suppressing them : a little trick

- new operators : time-shifted copies of basical operators
- Mix GEVP and black-box methods
- Not a huge improvement but absolutely no cost

Operators and contractions

ρ operator

$\rho^{i}=\bar{q} \gamma^{i} q$

$\pi \pi$ operator

$$
\mathcal{O}_{i}(\vec{p}, \vec{q})=\left(p_{i}-q_{i}\right)\left[\pi^{+}(\vec{p}) \pi^{-}(\vec{q})-\pi^{-}(\vec{p}) \pi^{+}(\vec{q})\right]
$$

Stochastic propagators
As in [Aoki'07] we use two kinds of stochastic propagators :

$$
\begin{gathered}
Q\left(\vec{x}, t \mid \vec{q}, t_{s}, \xi_{j}\right)=\sum_{\vec{y}} D^{-1}\left(\vec{x}, t ; \vec{y}, t_{s}\right) \cdot\left[e^{i \vec{p} \cdot \vec{y}} \xi_{j}(\vec{y})\right] \\
W\left(\vec{x}, t\left|\vec{k}, t_{1}\right| \vec{q}, t_{s}\right)=\sum_{\vec{z}} D^{-1}\left(\vec{x}, t ; \vec{z}, t_{1}\right) \cdot\left[e^{i \vec{k} \cdot \vec{z}} \gamma_{5} Q\left(\vec{z}, t_{1} \mid \vec{q}, t_{s}\right)\right]
\end{gathered}
$$

Outline

Operators and contractions(2)

 -

$$
G_{\pi \pi \rightarrow \rho}^{1 s t}=\sum_{j, \vec{x}} e^{-i \vec{P} \vec{x}}\left\langle Q\left(\vec{x}, t \mid \overrightarrow{0}, t_{s}, \xi_{j}\right) W^{\dagger}\left(\vec{x}, t\left|-\vec{p}, t_{s}\right|-\vec{q}, t_{s}, \xi_{j}\right) \gamma_{5} \gamma_{3}\right\rangle
$$

Our lattices

Action

- $2+1$ full QCD
- tree-level $O\left(a^{2}\right)$-improved Lüscher-Weisz gauge action
- tree-level clover-improved Wilson fermions
- 2 steps of HEX smearing

200MeV point

- $\beta=3.31, a=0.116 \mathrm{fm}$
- $32^{3} \times 48$
- 130 configurations analyzed
- $\vec{P}=(0,0,0)$

Julien Frison frison@cpt.univ-mrs.fr

340 MeV point

- $\beta=3.31, a=0.116 \mathrm{fm}$
- $24^{3} \times 48$
- 77 configurations analyzed
- $\vec{P}=(0,0,1)$

Rho decays widths from the latticePreliminary results

Putting it all together

GEVP Eigenvalues at $\mathrm{m}_{\pi}=200 \mathrm{MeV}$

- For $t<6$ higher states contamination
- $6 \leq t \leq 9$ has some signal

Putting it all together(2)

GEVP effect at $\mathrm{m}_{\pi}=340 \mathrm{MeV}$

- For the point 200 MeV : $g=5.5 \pm 2.9$
- For the point 340MeV :

$$
g=6.6 \pm 3.4
$$

- Combining both :
$g=6.0 \pm 2.2$

Conclusion

- $g=6.0 \pm 2.2$ (central value gives $\Gamma=150 \mathrm{MeV}$, compatible with experiment)
- Preliminary results
- More configurations are available and need to be analyzed. Could use several noises/cfg
- Needs for other β, a, \ldots
- Method now well-known, can lead to interesting results
- Lowest m_{π} up to my knowledge $\Rightarrow \Gamma$ of the physical order.
- Approximations good up to our precision
- Effective range
- $g \sim c s t$

