Spatial diquark correlations in a hadron

Jeremy Green^a Michael Engelhardt^b John Negele^a Patrick Varilly^c

^aCenter for Theoretical Physics Massachusetts Institute of Technology

> ^bPhysics Department New Mexico State University

^cDepartment of Physics University of California, Berkeley

The XXVIII International Symposium on Lattice Field Theory June 14–19, 2010

Diquarks

- Diquarks are two-quark systems.
- They are colored objects and so cannot be studied in isolation.
- The diquarks considered here are created by operators of the form $\overline{q_C}\Gamma q$, where $\overline{q_C} = q^T C = iq^T \gamma_0 \gamma_2$ and $\Gamma = 1, \gamma_\mu, \gamma_5, \gamma_5 \gamma_\mu, \sigma_{\mu\nu}$. Their color structure combines in the $\overline{\mathbf{3}_c}$ antitriplet representation.

Good and bad diquarks

- The lowest energy diquarks are the spin 0, flavor antisymmetric "good" diquarks $\overline{q_C}\gamma_5 q$ and $\overline{q_C}\gamma_5\gamma_0 q$, and the spin 1, flavor symmetric "bad" diquarks $\overline{q_C}\gamma_i q$ and $\overline{q_C}\sigma_{0i}q$. Both of these are even parity, color $\overline{\mathbf{3}_c}$.
- One gluon exchange in a quark model predicts that the bad diquarks have higher energy by ~ 200 MeV.
- Instanton interactions also favor good diquarks.
- The remaining $\overline{q_C} \Gamma q$ diquarks have odd parity and higher energy.

Previous studies

١

- C. Alexandrou, Ph. de Forcrand and B. Lucini, Phys. Rev. Lett. **97**, 222002 (2006) [arXiv:hep-lat/0609004].
- Color antitriplet diquark combined with a static quark to form a color singlet.
- Measured two-quark density correlator:

$$C_{\Gamma}(\mathbf{r}_{u},\mathbf{r}_{d},t) = \langle 0|J_{\Gamma}(\mathbf{0},2t)J_{0}^{u}(\mathbf{r}_{u},t)J_{0}^{d}(\mathbf{r}_{d},t)J_{\Gamma}^{\dagger}(\mathbf{0},0)|0\rangle$$

where $J_{0}^{f} = \overline{f}\gamma_{0}f$ and $J_{\Gamma} = \epsilon^{abc} \left[u_{a}^{T}C\Gamma d_{b} \pm d_{a}^{T}C\Gamma u_{b}\right]s_{c}.$

Spatial correlations

To isolate the intrinsic diquark correlations, the authors looked at spherical shells $|\mathbf{r}_u| = |\mathbf{r}_d| = r$.

A different approach

- R. Babich, N. Garron, C. Hoelbling, J. Howard, L. Lellouch and C. Rebbi, Phys. Rev. D 76, 074021 (2007) [arXiv:hep-lat/0701023].
- Using gauge-fixed lattices and finite mass strange quarks (degenerate with u and d), the zero-momentum correlator

$$G(\vec{r}_{u},\vec{r}_{d},t) = \sum_{\vec{r}} \langle u(\vec{r}+\vec{r}_{u},t)d(\vec{r}+\vec{r}_{d},t)s(\vec{r},t)\bar{u}(\vec{0},0)\bar{d}(\vec{0},0)\bar{s}(\vec{0},0) \rangle$$

was computed for the $\Lambda,$ $\Sigma,$ and Σ^* baryons.

• This was used to define a wave function $\Psi(\vec{r}_u, \vec{r}_d) = \frac{G(\vec{r}_u, \vec{r}_d, t)}{\sum_{\vec{r}_u, \vec{r}_d} |G(\vec{r}_u, \vec{r}_d, t)|^2}$.

Diquark wavefunction

A (red) and Σ^* (green) in the Coulomb gauge, at R/a = 4.5 (left) and R/a = 2.25 (right).

- Uncorrelated $\rho_2(\mathbf{r}_1, \mathbf{r}_2) = \rho_1(\mathbf{r}_1)\rho_1(\mathbf{r}_2)$ plotted this way can give the appearance of a diquark.
- Want to show only the clustering induced by the diquark interaction.

$$C(\mathbf{r}_1, \mathbf{r}_2) = \frac{\rho_2(\mathbf{r}_1, \mathbf{r}_2) - \rho_1(\mathbf{r}_1)\rho_1(\mathbf{r}_2)}{\rho_1(\mathbf{r}_1)\rho_1(\mathbf{r}_2)}$$

- Is zero if there is no diquark interaction.
- Denominator compensates for presence of static quark at $\mathbf{r} = \mathbf{0}$.

$$egin{aligned} &
ho_2(\mathbf{r}_1,\mathbf{r}_2) \propto \langle 0|J_{\gamma_5}(\mathbf{0},t_f)J_0^u(\mathbf{r}_1,t)J_0^d(\mathbf{r}_2,t)\overline{J_{\gamma_5}}(\mathbf{0},t_i)|0
angle \ &
ho_1(\mathbf{r}) \propto \langle 0|J_{\gamma_5}(\mathbf{0},t_f)J_0^u(\mathbf{r},t)\overline{J_{\gamma_5}}(\mathbf{0},t_i)|0
angle \end{aligned}$$

- $16^3 \times 32$, $\beta = 6.0$, quenched, a = 0.093 fm, 200 configurations (NERSC OSU_Q60a).
- $m_{\pi} = 893$ MeV, Wilson fermions.
- Measurements averaged over 2 timeslices and seven static quark lines.
- ρ_1 and ρ_2 normalized so that $\sum_{\mathbf{r}} \rho_1(\mathbf{r}) = 1$ and $\sum_{\mathbf{r}_1,\mathbf{r}_2} \rho_2(\mathbf{r}_1,\mathbf{r}_2) = 1$.
- Also computed $\overline{q_C}\gamma_i q$ bad diquark case.

Image effects

J. Green, M. Engelhardt, J. Negele, P. Varilly Spatial diquark correlations in a hadron

Image effects

J. Green, M. Engelhardt, J. Negele, P. Varilly Spatial

Image effects

- Deal with image effects by fitting a parameterized function to the data.
- Instead of fitting $f(\mathbf{r}_1, \mathbf{r}_2)$, fit

$$f_{\text{img}}(\mathbf{r}_1, \mathbf{r}_2) = \sum_{n_1^i, n_2^i = -1, 0, 1} f(\mathbf{r}_1 + \mathbf{n}_1 L, \mathbf{r}_2 + \mathbf{n}_2 L)$$

- Given a good fit, the image effects can be subtracted off.
- Data points most affected by images were excluded from the fit shown here.

• 11 parameter fit,
$$\frac{\chi^2}{dof} \simeq 0.25$$

J. Green, M. Engelhardt, J. Negele, P. Varilly Spatial diquark correlations in a hadron

 ho_2 with *R* fixed and $\mathbf{R} \perp \mathbf{r}$

Unquenched ensemble

- MILC gauge configurations with domain wall valence quarks.
- $20^3 \times 64$, a = 0.1241 fm, $m_{\pi} = 293$ MeV
- 8 measurements per configuration
- 453 configurations.

Comparison between configurations

Correlation function

C with R = 0.4 fm and $\mathbf{R} \perp \mathbf{r}$

Summary

- Good and bad diquark compared at $m_{\pi}=893$ MeV and $m_{\pi}=293$ MeV.
- Good diquark has stronger correlation as expected.
- Difference between good and bad diquark is greater at smaller pion mass.

References

M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson and D. B. Lichtenberg, "Diquarks," Rev. Mod. Phys. 65, 1199 (1993). R. L. Jaffe, "Exotica." Phys. Rept. 409, 1 (2005) [arXiv:hep-ph/0409065]. C. Alexandrou, Ph. de Forcrand and B. Lucini, "Evidence for diquarks in lattice QCD," Phys. Rev. Lett. 97, 222002 (2006) [arXiv:hep-lat/0609004]. R. Babich, N. Garron, C. Hoelbling, J. Howard, L. Lellouch and C. Rebbi, "Diquark correlations in baryons on the lattice with overlap guarks," Phys. Rev. D 76, 074021 (2007) [arXiv:hep-lat/0701023].