The running coupling of QCD with four flavors (arXiv:1006.0672)

Rainer Sommer, Fatih Tekin & Ulli Wolff

NIC

Lattice 2010, June 2010, Villasimius, Sardinia

Rainer Sommer, Fatih Tekin & Ulli Wolff

The running coupling of QCD with four flavors (arXiv:1006.067

$\alpha_{\rm s}{:}$ the fundamental parameter of QCD

Summary of precise determinations 2010

Spread is larger than the estimated precision!

From [S. Bethke, 2009; S. Alekhin et al, 2009, A. Hoang et al., 2009]

$\alpha_{\rm s}:$ the fundamental parameter of QCD

Summary of precise determinations 2010

Spread is larger than the estimated precision!

 $\overrightarrow{\textbf{ALPHA}} : \text{precise and reliable determination} \\ \leftrightarrow \quad \text{precise and non-perturbative} \\ \text{computation up to high } \mu$

- - E - - - E - -

more and more realistic

From [S. Bethke, 2009; S. Alekhin et al, 2009, A. Hoang et al., 2009]

$\alpha_{\rm s}:$ the fundamental parameter of QCD

Summary of precise determinations 2010

Spread is larger than the estimated precision!

 $\overrightarrow{\textbf{A}_{LPHA}} : \text{precise and reliable determination} \\ \leftrightarrow \quad \text{precise and non-perturbative} \\ \text{computation up to high } \mu$

向下 イヨト イヨト

more and more realistic

From [S. Bethke, 2009; S. Alekhin et al, 2009, A. Hoang et al., 2009]

2009: $N_{\rm f} = 3$ running [PACS-CS]

One step further: The non-perturbative running for four flavors

Problem in a lattice computation (α_{qq} as an example)

Problem in a lattice computation (α_{qq} as an example)

Finite size effect as a physical observable; finite size scaling!

・ 同 ト・ イ ヨ ト・・ ・ ヨ ト・・・

Definition of $\bar{g}_{\rm SF}$

Адрна 1991 - 2001

레이 에트이 에트이 트

The step scaling function

... is a discrete beta function:

$$\sigma(s, \bar{g}^2(L)) = \bar{g}^2(sL) \qquad \text{mostly } s = 2$$

<回> < 回> < 回> < 回>

æ

The step scaling function

... is a discrete beta function:

$$\sigma(s, \bar{g}^2(L)) = \bar{g}^2(sL)$$
 mostly $s = 2$

The step scaling function: $\sigma(s, u) = \bar{g}^2(sL)$ with $u = \bar{g}^2(L)$

On the lattice: additional dependence on the resolution a/L

 g_0 fixed, L/a fixed:

$$ar{g}^2(L) = u, \qquad ar{g}^2(sL) = u',$$

 $\Sigma(s, u, a/L) = u'$

 $\Sigma(2,u,1/4)$

continuum limit:

 $\Sigma(s, u, a/L) = \sigma(s, u) + O(a/L)$

in the following always s = 2

everywhere: m = 0 (PCAC mass defined in $(L/a)^4$ lattice)

ৰ □ > ৰ ি > ৰ ই > ৰ ই > টি > টি ব > ব The running coupling of QCD with four flavors (arXiv:1006.067

Tuning / Interpolation

PCAC mass in SF for "small" lattice: tuning κ

$$m(L) = 0 \rightarrow \kappa_c(\beta, a/L)$$

Interpolation in β

$$\bar{g}^{2}(\beta)_{L/a,\kappa=\kappa_{c}(\beta,a/L)} = \frac{6}{\beta} \left[\sum_{m=0}^{n} c_{m,L/a} \left(\frac{6}{\beta} \right)^{m} \right]^{-1}$$

Appelquist, Fleming & Neil, 2009

▲□→ ▲ ヨ→ ▲ ヨ→

Tuning / Interpolation

PCAC mass in SF for "small" lattice: tuning κ

 $m(L) = 0 \rightarrow \kappa_c(\beta, a/L)$

ヨト イヨト イヨト

Tuning / Interpolation

PCAC mass in SF for "small" lattice: tuning κ

 $m(L) = 0 \rightarrow \kappa_c(\beta, a/L)$

Lattice step scaling function $\Sigma(u, a/L)$

ヨト イヨト イヨト

Improvement: very important for $\bar{g}_{\rm SF}^2$ [ALPHA]

- Standard O(a) improvement: $c_{sw}(g_0)$, NP for $\beta \ge 5.0$ [Tekin, S., Wolff, 2009]
- ▶ boundary O(a)-terms, e.g. $c_t(g_0)a^4 \sum_x F_{0k}F_{0k}$ at $x_0 = 0$ and $x_0 = T$ c_t to two-loops from [Bode, Weisz & Wolff, 1999] check of remaining uncertainty for $N_f = 2$

remaining cutoff effects of SSF:

$$\begin{split} \delta(u, a/L) &= \frac{\Sigma(u, a/L) - \sigma(u)}{\sigma(u)} = \delta_1(a/L)u + \delta_2(a/L)u^2 + \dots \\ \delta_1(a/L) &= \delta_{10}(a/L) + \delta_{11}(a/L)N_{\rm f} & \left[\begin{array}{c} \overline{\mathcal{A}}_{LPHA} \\ 0 & 0 \end{array} \right]_{2} \\ \delta_2(a/L) &= \delta_{20}(a/L) + \delta_{21}(a/L)N_{\rm f} + \delta_{22}(a/L)N_{\rm f}^2 \\ \end{array} \end{split}$$

Observable improvement [De Divitiis et al., 1993] improved step scaling function:

$$\Sigma^{(2)}(u, a/L) \equiv \frac{\Sigma(u, a/L)}{1 + \delta_1(a/L)u + \delta_2(a/L)u^2}$$
$$= \sigma(u) + O(u^4 a/L)$$

Continuum limit

Constant fit: $\Sigma^{(2)}(u, a/L) = \sigma(u)$ for L/a = 6, 8Global fit: $\Sigma^{(2)}(u, a/L) = \sigma(u) + \rho u^4 (a/L)^2$ for L/a = 6, 8 $\rightarrow \rho = 0.007(85)$

► L/a = 8 data:

 $\sigma(u) = \Sigma^{(2)}(u, 1/8)$

イロト イヨト イヨト イヨト

Rainer Sommer, Fatih Tekin & Ulli Wolff The running coupling of Q

The running coupling of QCD with four flavors (arXiv:1006.067

Continuum SSF

и	$\sigma(u)$					
	constant fit	global fit	L/a = 8 data			
0.9300	1.002 (3)	1.002 (3)	0.997 (5)			
1.0000	1.084 (3)	1.084 (3)	1.081 (4)			
1.0813	1.182 (3)	1.182 (4)	1.181 (5)			
1.1787	1.301 (4)	1.301 (5)	1.301 (6)			
1.2972	1.448 (5)	1.448 (7)	1.450 (7)			
1.4435	1.634 (5)	1.634(10)	1.637 (8)			
1.6285	1.877 (7)	1.877(16)	1.880(11)			
1.8700	2.209(10)	2.207(27)	2.212(17)			
2.2003	2.698(14)	2.694(49)	2.697(24)			
2.6870	3.507(30)	3.50 (10)	3.496(44)			

\uparrow result

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Rainer Sommer, Fatih Tekin & Ulli Wolff The running coupling of QCD with four flavors (arXiv:1006.067

Recursive reconstruction of $\bar{g}_{SF}(L)$

$$\begin{array}{ll} u_i &\equiv & \bar{g}^2 \left(L_{\max}/2^i \right) \\ u_i &= & \sigma(u_{i+1}), \quad i=0,\ldots,n, \quad u_0=u_{\max}=\bar{g}^2 \left(L_{\max} \right), \end{array}$$

solve for u_{i+1} , $i = 0 \dots n = 10$

イロン イヨン イヨン イヨン

-2

Lambda parameter

for large *i*, small $u_i = \bar{g}^2(L_i)$:

$$L_{i}\Lambda = \left[b_{0}\bar{g}^{2}(L_{i})\right]^{-\frac{b_{1}}{2b_{0}^{2}}}\exp\left\{-\frac{1}{2b_{0}\bar{g}^{2}(L_{i})}\right\} \times \\ \exp\left\{-\int_{0}^{\bar{g}(L_{i})}dx\left[\frac{1}{\beta(x)}+\frac{1}{b_{0}x^{3}}-\frac{b_{1}}{b_{0}^{2}x}\right]\right\}$$

	constant fit		global fit		L/a = 8 data	
i	ui	$\ln(\Lambda L_{\max})$	ui	$\ln(\Lambda L_{\max})$	ui	$\ln(\Lambda L_{\max})$
0	3.45	-2.028	3.45	-2.028	3.45	-2.028
1	2.660(14)	-2.074(17)	2.666(46)	-2.066(56)	2.660 (21)	-2.073(26)
2	2.173(13)	-2.117(24)	2.179(45)	-2.105(83)	2.173 (20)	-2.116(37)
3	1.842(11)	-2.155(28)	1.847(37)	-2.141(97)	1.842 (17)	-2.153(44)
4	1.6013(90)	-2.188(32)	1.606(30)	-2.17(10)	1.602 (14)	-2.185(50)
5	1.4187(78)	-2.217(35)	1.422(25)	-2.20(11)	1.419 (13)	-2.213(56)
6	1.2748(70)	-2.241(39)	1.278(20)	-2.23(11)	1.275 (11)	-2.238(63)
7	1.1583(63)	-2.263(43)	1.161(17)	-2.25 (12)	1.159 (10)	-2.259(70)
8	1.0620(58)	-2.282(47)	1.064(15)	-2.27 (12)	1.0626(95)	-2.278(76)
9	0.9809(53)	-2.299(50)	0.982(13)	-2.29(12)	0.9815(87)	-2.294(83)
10	0.9117(49)	-2.315(54)	0.913(11)	-2.30 (12)	0.9122(81)	-2.309(89)

Running $\alpha,$ comparison to PT

10% (3 sigma) difference to PT (3-loop $\beta)$ at $\bar{g}^2(L)=3.5$ more than for $N_{\rm f}=2$

Rainer Sommer, Fatih Tekin & Ulli Wolff The running coupling of QCD with four flavors (arXiv:1006.067

Summary, outlook

- ► a good step closer to Λ for $N_{\rm f} = 4$
- $\blacktriangleright~N_{\rm f}=4 \rightarrow N_{\rm f}=5$ by perturbation theory
- \blacktriangleright relation of $L_{\rm max}$ to $F_{\rm K}$ or so remains to be done
 - ▶ 2+1+1 simulations with a massive charm quark
 - for large volume
 - probably also in the Schrödinger functional (massive scheme)

Summary, outlook

- ► a good step closer to Λ for $N_{\rm f} = 4$
- $\blacktriangleright~N_{\rm f}=4 \rightarrow N_{\rm f}=5$ by perturbation theory
- \blacktriangleright relation of $L_{\rm max}$ to $F_{\rm K}$ or so remains to be done
 - ▶ 2+1+1 simulations with a massive charm quark
 - for large volume
 - probably also in the Schrödinger functional (massive scheme)

Summary, outlook

- ► a good step closer to Λ for $N_{\rm f} = 4$
- $\blacktriangleright~N_{\rm f}=4 \rightarrow N_{\rm f}=5$ by perturbation theory
- \blacktriangleright relation of $L_{\rm max}$ to $F_{\rm K}$ or so remains to be done
 - ▶ 2+1+1 simulations with a massive charm quark
 - for large volume
 - probably also in the Schrödinger functional (massive scheme)
- tests of universality / increased precision with different discretizations?
 - staggered
 - chirally twisted boundary conditions

(日) (문) (문) (문) (문)