Solving the Dirac equation on QPACE

Andrea Nobile

Uni Regensburg

OUTLINE

- **2** SOLVER CHOICE
- **3** SAP GCR Solver
- SAP-FGMRES-DR

5 CONCLUSIONS

Cell Architechture: Explicit handling of memory hierarchy

- 1 standard core (PPU), 8 small cores (SPU)
- 256KB Local Store per SPU it is not a cache
- In order to access data in main memory (MM) from the SPU, the programmer must give explicit commands to a dma machine to move data between LS and MM
- SPU program works only on LS addresses
- Data layout must be carefully chosen both to facilitate programming and to obtain performance
- Tasks with irregular/complex data access pattern are not well suited for SPU

SOLVER CHOICE

	CG	SAP-GCR (M. Luescher)
Lattice size flexibility	poor	reasonable
E/O preconditioning	difficult	yes (block solver)
Network bandwidth req.	high	low
Network latency tolerance	moderate	high
MM bandwidth req.	moderate/high	moderate

- Adaptation for BQCD (Y. Nakamura)
- BQCD

_

- Y. Nakamura
- H. Stueben

SAP GCR SOLVER OVERVIEW

- FGCR algorithm
- Domain Decomposition Preconditioner (SAP)
- Mixed precision (restart done in DP)

Using M_{sap} to denote the operator associated with the SAP the righ-preconditioned Dirac equation reads

$$DM_{sap}\phi = \eta$$

the solution ψ of the original equation $\psi = D^{-1}\eta$ is given by

$$\psi = M_{sap}\phi$$

PRECONDITIONER: SAP

- Lattice is divided into non overlapping blocks, chessboard coloured
- The two domains are visited alternatively to construct an approximate solution ψ = M_{sap}ρ of the equation Dψ = ρ
- For each SAP cycle and domain, once $D_{\Omega}\psi_{\Omega} = \rho_{\Omega}$ is solved on the block, the contribution to the residue on neighbouring blocks due to the updated solution is computed $\rho \rightarrow \rho - D\psi$
- The update of the residue requires network communication
- Data communicated through network is necessary only after half of the blocks are processed (ability to tolerate high network latency)

Andrea Nobile (Uni Regensburg)

Solving the Dirac equation on QPACE

SAP IMPLEMENTATION

- Required a complete rewrite
- Block solver uses an MR algorithm with a fixed number of iterations n_{it} (4 16)
- Block solver is parallelized on chip along the time direction on the 8 SPUs
- Network bandwith requirements are $1/(n_{it} + 1)$ of the equivalent Dirac operator
- To maximize block size and block solver performance, I have chosen to limit prefetch
- Network data transfer is overlapped with computation

TNW: A LOW LEVEL PROGRAMMER'S VIEW

- 6 links, 8 channels (up to 8 concurrent messages on the same link)
- Send Operation
 - links and channels are memory mapped address ranges in the program address space
 - Sends operations are done with SPU's dma engine (mfc put operation) to the address of the wanted link and channel
- Receive Operation
 - Network Processor (NWP) must be programmed to enable data forwarding from a specific link-channel combination to a given address
 - NWP notifies the program for a completed recv operation by updating a user defined location in memory
 - Possible to receive data both in local store and main memory

SAP IMPLEMENTATION (NETWORK)

- Network sends are done from SPUs using the SPU dma engine
- Recv operations are controlled by PPU and done directly in MM
- One (64KB) page per block face
- The number of recv operations in-flight is tunable from 1 up to 8 blocks per link (Network channels)
- Different SPUs use different remote offsets for puts (8 sends for each recv)
- SPU code identical to single-node version

SAP PERFORMANCE

- Block solver performance limited by
 - LS size, code size
 - load/store/shuffle instructions
 - dma commands overhead
- block solver alone achieved 50% of the floating point peak on a $8^2\times 6^2$ block (xlc)
- $\bullet\,$ production block solver (gcc) runs at 36% on $8^2\times 4^2$ block
- complete M_{sap} (with dmas, thw comm., D on block boundaries, etc.) runs slower
- simple but good estimate of the M_{sap} performance can be done with

$$\epsilon_{fp} = \frac{T_{bs-peak} \times (n_{it}+1)/(n_{it})}{\max[T_{bs} \times (n_{it}+1)/(n_{it}) + T_{LM}/\epsilon_{LM} , T_{tnw}]}$$

SAP PERFORMANCE

Typical solver parmaters: block solver iterations = 4, SAP cycles = 10

block size	ϵ_{bs} (m)	ϵ_{Msap} (e)	ϵ_{Msap} (m)	T_{fp}	T_{LM}	$T_{tnw}(1.5)$	$T_{tnw}(3.0)$
8x4x8x4	36%	25.8%	25.9%	458	145	128	64
8x2x6x6	34%	24.1%	23%	258	89	128	64
8x2x2x10	30%	21.7%	19.3%	172	52	94	47

Typical production run on 32^3 x64 lattice with $\kappa = 0.13632, \beta = 5.29$ on 256 QPACE nodes (2048 cores)

	gcr	Msap	dp D	la	cl	cl inv
fraction of total solver time	96%	72%	13%	12%	3%	< 1%

SAP SCALING

Andrea Nobile (Uni Regensburg)

SAP SCALING

WEAK SCALING

When k goes high

$$16^3 \times 32, \ \beta = 5.29, \ \kappa_{sea} = 0.1350, \ \kappa_{val} = 0.1374, \ \kappa_{val}^c \approx 0.1377$$

Andrea Nobile (Uni Regensburg)

Solving the Dirac equation on QPACE

THE RESTART OF DEATH

- Restarting the recursion destroys the Krilov subspace
- Accumulated information is lost
- Information is reconstructed after every restart
- Recursion is too short to take advantage of accumulated information

WHAT HAPPENS?

- SAP preconditioner
 - able to invert effeciently high modes
 - not able to invert low modes
- Let us speculate about what happens
 - At the beginning, the source has good overlap with high and low eigenvectors
 - ► After some iterations, maybe 1-2 restarts, high eigenvectors are ≈ absent in the residual vector
 - Residual vector has good overlap with the space of low eigenvectors
 - Under these conditions SAP is not an efficient inverter
 - Recursion is constructing a basis for a subspace spanned mostly by low eigenvectors
 - after this, solver proceeds as a deflated solver: fast

SAP-FGMRES-DR

- GMRES-DR (R. B. Morgan)
- FGMRES-DR (*F* generalization by X. Pinel)

BASIC IDEA

- Use information contained in the current Krilov subspace to approximate low eigenvectors
- Rebuild a new Krilov subspace with the approximate low eigenvectors
- Restart, improve current eigenvectors, and evetually find new ones
- Keep high convergence rate with a limited storage requirement

THE ALGORITHM AT WORK

 $16^3 \times 32, \beta = 5.29, \kappa_{sea} = 0.13500, \kappa_{val} = 0.13768, \kappa_{val}^c \approx 0.13770$

Andrea Nobile (Uni Regensburg)

EIGENVECTORS DEVELOPMENT

$$16^3 \times 32, \beta = 5.29, \kappa_{sea} = 0.13500, \kappa_{val} = 0.13768, \kappa_{val}^c \approx 0.13770$$

Andrea Nobile (Uni Regensburg)

KAPPA DEPENDENCE

CONCLUSIONS

MACHINE AND CODE ARE WORKING

- SAP preconditioner proved to be a good choice for QPACE
- We have a production-quality solver which is used on QPACE
- On a typical run with typical solver parameters the solver sustains 20% of the single precision peak
- SAP-FGMRES-DR is very promising with low quark masses
- Special thanks to: D. Pleiter, H. Simma, A. Frommer, Y.Nakamura, T. Streuer, S. Solbrig, B. Mendl, and the whole QPACE team!