Effective Polyakov-loop theory for pure Yang-Mills from strong coupling expansion: numerical aspects and conclusions

S. Lottini¹, J. Langelage² and O. Philipsen¹

¹Department of Physics, Goethe Universität, Frankfurt am Main

> ²Department of Physics, Universität Bielefeld

The XXVIII International Symposium on Lattice Field Theory

Outline

The setting

- The starting point
- Analytical aspects
- 2 Monte Carlo implementation
 - Sign" problems
 - Getting to the numbers
 - Another coupling in the effective theory

3 Results & Outlook

- Results
- Future developments

-≣ → -∢

The setting

Monte Carlo implementation Results & Outlook The starting point Analytical aspects

Outline

The setting

- The starting point
- Analytical aspects

2 Monte Carlo implementation

- Sign" problems
- Getting to the numbers
- Another coupling in the effective theory

3 Results & Outlook

- Results
- Future developments

The starting point Analytical aspects

General strategy

- Start from a reliable 3D effective theory with scalars;
- find its critical points;
- with N_τ-dependent (analytically found) maps translate this back to an array of critical β_c(N_τ);
- verify the predictiveness against known (3+1)D gauge simulations.

・ロト ・聞 と ・ ヨ と ・ ヨ と

The starting point Analytical aspects

The ideal "SU(3)" effective theory

• Goal: the critical point $\lambda_{1,c}$ for the NN effective theory:

$$Z = ig(\prod_x \int \mathrm{d} L_x oldsymbol{e}^{V_x}ig) \prod_{< i,j>} (1+2\lambda_1 \mathfrak{Re} L_i L_j^*)$$
 ;

 $L_x = \text{Tr} W_x$ lives on *points* of the 3D lattice; $|L| \leq 3$.

- The N_{τ} -dependence is hidden in the maps $\lambda_{1(N_{\tau})}(u(\beta))$.
- Useful to think of it as $Z = \sum_{\text{config.}} e^{-S_{\text{eff}}}$:

$$\mathcal{S}_{ ext{eff}} = -\sum_{\langle i,j
angle} \log(1+2\lambda_1 \mathfrak{Re} L_i L_j^*) - \sum_x V_x \; .$$

• Reference case: the SU(2) version, with $2\lambda_1 \Re \mathfrak{e} L_i L_i^* \mapsto \lambda_1 L_i L_j$, is more under control.

The starting point Analytical aspects

Group parametrisation

• The potential encodes the Haar measure:

$$V_x = rac{1}{2} \log(27 - 18|L|^2 + 8 \Re \epsilon L^3 - |L|^4)$$
.

• Parametrisation: $L = e^{i\theta} + e^{i\phi} + e^{-i(\theta+\phi)}$, so that

• In the case of SU(2), it is $-2 \le L \le +2$, and simply

$$\int d_g L_x = \int_{-2}^{+2} dL_x e^{V_x} , \quad V_x = \frac{1}{2} \log(4 - L_x^2) .$$

= 990

ヘロト 人間 ト ヘヨト ヘヨト

"Sign" problems Getting to the numbers Another coupling in the effective theory

Outline

The setting

- The starting point
- Analytical aspects

2 Monte Carlo implementation

- Sign" problems
- Getting to the numbers
- Another coupling in the effective theory

3 Results & Outlook

- Results
- Future developments

"Sign" problems Getting to the numbers Another coupling in the effective theory

Virtues and Vices of the $S_{\rm eff}$

Metropolis accept/reject update for:

$$\mathcal{S}_{ ext{eff}} = -\sum_{\langle i,j
angle} \log(1+2\lambda_1 \mathfrak{Re}L_iL_j^*) - \sum_{x}V_x$$

- The appearance of a "sign problem" makes it difficult!
- In SU(3) the above S_{eff} cannot be implemented;
- the problem gets milder for SU(2).

"Sign" problems Getting to the numbers Another coupling in the effective theory

Solution

• Way out: Taylor-expand the log in S_{eff} to some order M:

$$S_{ ext{eff}}^{(M)} = -\sum_{x} V_{x} - \left(+2q - 2q^{2} + rac{8}{3}q^{3} - 4q^{4} + \ldots + \#q^{M}
ight)$$

with $q \equiv \lambda_1 \Re e L_i L_j^*$.

- A family of problem-free models \Rightarrow a family of $\lambda_{1,c}^{(M)}$.
- Convergence for $M \to \infty$?

ヘロア 人間 アメヨア 人口 ア

"Sign" problems Getting to the numbers Another coupling in the effective theory

Practical Aspects - I

Finding the critical point:

- Collect the pseudo-critical point λ_{1,c}(N_s) for a variety of system volumes N³_s;
- Perform a scaling analysis to the thermodynamic limit:

$$\lambda_{1,c}(N_s) = \lambda_{1,c} + b N_s^{-1/\nu};$$

 $\nu = 1/3$ for the 1st order SU(3), $\nu_{Ising3D}$ for SU(2).

Typical sizes range from $N_s = 6$ to 16; time needed is of order **a** few days on an ordinary PC.

"Sign" problems Getting to the numbers Another coupling in the effective theory

Practical Aspects - II

- A "safe" observable is the modulus |*L*|, well-defined independently of *S*_{eff} (unlike the energy).
- One can construct the Binder cumulant for |L|:

$$B(|L|) = 1 - rac{\langle |L|^4
angle}{3 \langle |L|^2
angle^2} ~
ightarrow ~\lambda_{1,c}(N_s)$$
 is the minimum ,

• or alternatively the associated susceptibility:

$$\chi(|L|) = \left\langle \left(|L| - \langle |L| \rangle \right)^2 \right\rangle \rightarrow \lambda_{1,c}(N_s)$$
 is the maximum.

ヘロト ヘ戸ト ヘヨト ヘヨト

"Sign" problems Getting to the numbers Another coupling in the effective theory

Order of the transition for SU(2)

In this model the transition is **second order**, with the 3D Ising critical scaling and no double-peak histograms.

"Sign" problems Getting to the numbers Another coupling in the effective theory

Order of the transition for SU(3) - I

The finite-size analysis confirms a first-order transition.

"Sign" problems Getting to the numbers Another coupling in the effective theory

Order of the transition for SU(3) - II

Also the histogram for |L| supports a first-order transition:

∃ → < ∃ →</p>

"Sign" problems Getting to the numbers Another coupling in the effective theory

Truncations and Convergence

- Larger $M \Rightarrow$ larger finite-size effects.
- $\lambda_{1,c}^{(M)}$ "stabilises" after $M \simeq 3$ (as in the SU(2) model).
- Compared to other systematic errors, using $\lambda_{1,c}^{(3)}$ is safe.

"Sign" problems Getting to the numbers Another coupling in the effective theory

L-neighbours interaction

Now we turn on a second coupling between "L-shaped" next-to-nearest neighbours:

In expanding the log in S_{eff} , keep terms up to $(\lambda_1)^3$ and $(\lambda_2)^1$.

The setting "Sign" problems Monte Carlo implementation Getting to the numbers Results & Outlook Another coupling in the effective theory

Properties of the two-coupling model

In the (λ_1, λ_2) plane there is now a *critical line*:

A linear relation is sufficient, $\lambda_{1,c} = a + b\lambda_2$, with:

$$a = 0.10625(5)$$
; $b = -1.8944(5)$

The map back to $\beta_c(N_{\tau})$ starts from the intersection

$$\lambda_{1,c}(\lambda_2) = \lambda_1(\lambda_2, N_{\tau})$$
.

★ ∃ > < ∃ >

Results Future developments

Outline

The setting

- The starting point
- Analytical aspects

2 Monte Carlo implementation

- Sign" problems
- Getting to the numbers
- Another coupling in the effective theory

3 Results & Outlook

- Results
- Future developments

Results Future developments

Predictiveness of the SU(2) model

Comparison with the Monte Carlo known β_c values for the (3+1)D theory:

similar outcome from $\lambda_{1,c}^{(1)} = 0.195374$ and $\lambda_{1,c}^{(\infty)} = 0.21423$: good within few %.

Results Future developments

The situation for SU(3)

- Less accurate than SU(2), but still within $\sim 5\%$.
- dominant errors from truncation of the series $\lambda_1(u)$.
- Truncation of S_{eff} in *M* is not so important.

Results Future developments

Outlook

Conclusions

- This simple, light model can be simulated quickly on a PC.
- Reproducing β_c of the (3+1)-D gauge theory within 5%.
- A single experiment gives the whole series of $\beta_c(N_{\tau})$.
- (All of this without 4D matrix-based simulation!)

Future developments

- Investigate the spectrum from $\langle L(0)L^*(x)\rangle$ correlators.
- Introduce fermions.

Results Future developments

End of presentation!

From now on: misc. plots, backup slides, hic sunt leones!

Results Future developments

Two-coupling critical line, numerical determination

From $\chi(L)$:

S. Lottini, J. Langelage and O. Philipsen Effective Polyakov-loop theory

Future developments

Estimate of the systematic errors

Compare the β_c from different truncations of $\lambda_{1(N_{\tau})}(u)$:

Estimating the systematic error

Results Future developments

Jena Inverse Monte Carlo vs. strong-coupling for λ_1

In the SU(2) case (arxiv:hep-lat/0502013):

Ntau=4, Jena IMC versus our series expansion for lambda(beta)

S. Lottini, J. Langelage and O. Philipsen Effective Polyakov-loop theory

Results Future developments

L distribution at criticality

Peaks at center elements and at zero, first-order.

S. Lottini, J. Langelage and O. Philipsen Effective Polyakov-loop theory

Results Future developments

Evidence for tunnelling

Time trajectory for *L* on single evolutions, first-order.

Results Future developments

Metastable states

Metastable interface between broken-symmetry domains; call for cluster update.

S. Lottini, J. Langelage and O. Philipsen

Effective Polyakov-loop theory

Results Future developments

The end, really

This is really the last slide, thank you.

ヘロト 人間 ト ヘヨト ヘヨト

S. Lottini, J. Langelage and O. Philipsen Effective Polyakov-loop theory