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Introduction

renormalisation on the lattice: let bare parameters and renormalisation factors Z depend on
the lattice spacing a in such a way that the limit a→ 0 is finite

ψR(x) = Zq(µ, a)
1/2ψ(x) quark field

OR(µ) = Z(µ, a)O(a) composite operator like ψ̄ψ
µ: renormalisation scale

direct calculation of physical observables (e.g. hadron masses): Z factors unnecessary
(cancel in physical quantities) ↑

scheme and renormalisation scale dependent

Why then worry about Z factors?

It is not always possible to calculate the physical observables directly!

example: deep-inelastic lepton-nucleon scattering

OPE: structure function = Wilson coefficient ⊗
hadronic matrix element of
a (local) composite operator

observable short distance
perturbative

long distance
non-perturbative
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How to evaluate renormalisation factors on the lattice?

perturbative methods:

• standard perturbation theory
(with or without improvement)

• numerical stochastic perturbation theory
(higher orders)

nonperturbative methods:

• Schrödinger functional methods

• Rome-Southampton method
RI-MOM scheme

G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa, A. Vladikas, NPB 445 (1995) 81
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basic ingredients in the RI-MOM scheme:

three-point function of O = ψ̄ · · ·ψ in Landau gauge quark propagator

Gij
αβ(p) =

a12

V

∑

x,y,z

e−ip·(x−y)〈ψiα(x)O(z)ψ̄jβ(y)〉 Sijαβ(p) =
a8

V

∑

x,y

e−ip·(x−y)〈ψiα(x)ψ̄jβ(y)〉

V = lattice volume

vertex function: Γ(p) = S−1(p)G(p)S−1(p)

−→ renormalised vertex function: ΓR(p) = Z−1
q ZΓ(p)

RI-MOM renormalisation condition: 1
12trDC

(

ΓR(p)ΓBorn(p)
−1

)
∣

∣

p2=µ2 = 1 in the chiral limit

µ = renormalisation scale

renormalisation of the quark fields: Zq(p) =
tr

(

−i
∑

λ γλ sin(apλ)aS
−1(p)

)

12
∑

λ sin2(apλ)

∣

∣

∣

∣

∣

p2=µ2

RI’-MOM
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renormalised operator ZO(a) ≡ ZS
bare(µ)O(a) (a dependence of Z suppressed)

depends on the renormalisation scale µ and the renormalisation scheme S

scale and scheme independent (for 1/L2 ≪ Λ2
QCD ≪ µ2 ≪ 1/a2 ):

ZRGI =

(

2β0
gS(µ)2

16π2

)−γ0/(2β0)

exp

{

∫ gS(µ)

0

dg

(

γS(g)

βS(g)
+

γ0

β0g

)

}

ZS
bare(µ) = ∆ZS(µ)ZS

bare(µ)

intermediate renormalisation scheme S = MS, MOM, . . . useful:

ZRGI = ∆ZS(µ)ZS
RI′−MOM

(µ)ZRI′−MOM
bare (µ)

↑ ↑

continuum perturbation theory

expansion in gMS, gM̃OMgg (K.G. Chetyrkin, A. Rétey, hep-ph/0007088), . . .
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Perturbative renormalisation on the lattice

• bare perturbation theory: Z = 1 −
g2

16π2
(γ0 ln(aµ) + ∆) +O(g4) (often poorly convergent)

• tadpole-improved perturbation theory (for an operator with nD covariant derivatives):

Z = u
1−nD

0

[

1 −
g2

2

16π2

(

γ0 ln(aµ) + ∆ + (nD − 1)
4

3
π2

)

+O(g4)

]

u0 = 〈1
3trU2〉

1/4 taken from simulations, g2
2

= g2/u4
0 boosted coupling

• “tadpole-improved renormalisation-group-improved boosted perturbation theory”
(TRB perturbation theory)

combining renormalisation group improvement with tadpole improvement

ZRGI = u
1−nD

0

(

2β0
g2

2

16π2

)−γ0/(2β0) (

1 +
β1

β0

g2
2

16π2

)−(γ2

1
β0−γ0β1)/(2β0β1)+16π2β0(1−nD)/(12β1)

with γ2(g2) = −a
d

da
lnZS

bare = γ0
g2

2

16π2
+ γ2

1

(

g2
2

16π2

)2

+ · · ·
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Subtraction of lattice artefacts

➀ standard calculation of Z in lattice perturbation theory neglects lattice artefacts: a2p2 ≪ 1

(keeps only logarithmic a dependence)
our momenta usually do not satisfy this condition

➁ (one-loop) lattice perturbative results for arbitrary a2p2:
evaluate the loop integrals numerically (for each p separately)

use the difference between ➀ and ➁ to correct for the (perturbative) discretisation errors

scalar density, Landau gauge, cSW = 1

lattice artefacts
for p along a lattice axis, p ∝ (0, 0, 0, 1),
larger than
for p along a diagonal, p ∝ (1, 1, 1, 1),
of the Brillouin zone
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The simulations

QCDSF-UKQCD configurations:

two degenerate flavours of clover fermions + plaquette action for the gauge field

four values of β:

β 5.20 5.25 5.29 5.40

a[fm] 0.086 0.079 0.075 0.067
r0 = 0.467 fm, r0ΛMS = 0.617

3 – 5 quark masses per β

three-point function G(p) =
a12

V

∑

x,y,z

e−ip·(x−y)〈ψ(x)O(z)ψ̄(y)〉 (quark-line connected)

calculated with the help of momentum sources

, reduced statistical fluctuations, arbitrary operators

/ number of inversions ∝ number of momenta
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Extracting the renormalisation factors

plateau (values independent of µ) in ZRGI = ∆ZS(µ)ZS
RI′−MOM

(µ)ZRI′−MOM
bare (µ) endangered by:

truncation of perturbative expansion (µ small) lattice artefacts (µ large)

Can we separate truncation effects from lattice artefacts?

ZS
bare(µ) ≡ ZS

RI′−MOM(µ)ZRI′−MOM
bare (µ) = ∆ZS(µ)−1ZRGI

rescale ZS
bare(µ) data −→ collapse onto a single curve (up to lattice artefacts)

5 1 2 5 10 2 5 10
2

2
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2
]

0.76

0.8

0.84

0.88

0.92

= 5.20
= 5.25
= 5.29
= 5.40

−→

5 1 2 5 10 2 5 10
2

2
[GeV

2
]

0.76

0.8

0.84

0.88

0.92

= 5.20
= 5.25
= 5.29
= 5.40

ZMOM
bare for ψ̄σµνψ
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look for a plateau (values independent of µ) in

ZRGI = ∆ZS(µ)ZS
RI′−MOM(µ)ZRI′−MOM

bare (µ)

example: ψ̄σµνψ

5 1 2 5 10 2 5 10
2

2
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2
]
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= 5.25
= 5.29
= 5.40
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2

2
[GeV

2
]
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1.0

= 5.20
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= 5.29
= 5.40

before after
the perturbative subtraction of lattice artefacts

available perturbative results cannot describe the scale dependence below 5 GeV2
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finally: account for deviations from a perfect plateau by a fit for all four β values simultaneously

altogether six fit parameters: ZRGI at the four β values, two “effective” coefficients
lattice artefacts, perturbative expansion

ψ̄σµνψ ψ̄γ{1
↔

D4}ψ

5 1 2 5 10 2 5 10
2

2
[GeV

2
]

0.8

0.84

0.88

0.92

0.96

1.0
= 5.20
= 5.25
= 5.29
= 5.40

5 1 2 5 10 2 5 10
2

2
[GeV

2
]

1.4

1.45

1.5

1.55

1.6

1.65

1.7
= 5.20
= 5.25
= 5.29
= 5.40

fits work only for subtracted data (exist only for operators with less than two derivatives)

in the other cases: read off ZRGI at µ2 = 20 GeV2 (linearly interpolated) “interpolation method”
error: maximum of the differences with the values at µ2 = 10 GeV2, 30 GeV2
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up to now: intermediate scheme S = MOM, expansion in the M̃OMgg coupling

compare with S = MS, expansion in the MS coupling

example: ψ̄σ1{2

↔

D3}ψ

S = MOM with M̃OMgg coupling: filled squares S = MS with MS coupling: open circles

5 1 2 5 10 2 5 10
2

2
[GeV

2
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1.9
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more loops pay off: ψ̄ψ (two-loop anomalous dimension)
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more loops pay off: ψ̄ψ (three-loop anomalous dimension)
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more loops pay off: ψ̄ψ (four-loop anomalous dimension)
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Results: operators without derivatives

S P V A T Zq

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Z
R

G
I

S: ψ̄ψ
P: ψ̄γ5ψ

V: ψ̄γµψ
A: ψ̄γµγ5ψ

T: ψ̄σµνψ
Zq = Zψ

β = 5.40

filled circles: fit results (subtracted data)
filled squares: interpolation results (subtracted data)
filled triangles: interpolation results (unsubtracted data)
open circles: bare perturbation theory (one loop)
open squares: tadpole-improved perturbation theory (one loop)
open triangles: TRB perturbation theory (one loop)
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Results: operators with one derivative

v2,a v2,b r2,a r2,b h1,a h1,b

1.5

1.55

1.6

1.65

1.7

1.75

1.8

Z
R

G
I β = 5.40

filled circles: fit results (subtracted data)
filled squares: interpolation results (subtracted data)
filled triangles: interpolation results (unsubtracted data)
open circles: bare perturbation theory (one loop)
open squares: tadpole-improved perturbation theory (one loop)
open triangles: TRB perturbation theory (one loop)
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Results: operators with two derivatives

v3 v3,a r3 a2 h2,a h2,b h2,c h2,d
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2.2

2.3

2.4

2.5

2.6

2.7

2.8

Z
R

G
I β = 5.40

filled triangles: interpolation results (unsubtracted data)
open circles: bare perturbation theory (one loop)
open squares: tadpole-improved perturbation theory (one loop)
open triangles: TRB perturbation theory (one loop)
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Results: operators without derivatives compared with two-loop perturbation theory

S P V A T
0.3

0.4
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0.6
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I

two-loop results:
A. Skouroupathis, H. Panagopoulos
Phys. Rev. D76 (2007) 094514
Phys. Rev. D79 (2009) 094508

crosses: fit results (subtracted data)
circles: bare perturbation theory open symbols: one loop
squares: tadpole-improved perturbation theory
triangles: TRB perturbation theory filled symbols: two loops
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Concluding remarks

• NPR in the RI-MOM scheme: (relatively) easy to implement for arbitrary lattice fermions

• momentum sources: many operators in a single simulation
small statistical errors, but CPU time ∝ number of momenta

• choose momenta close to the diagonal of the Brillouin zone (discretisation effects!)
still: perturbative subtraction of lattice artefacts very helpful, but not sufficient

• continuum perturbation theory needed for the conversion to the MS scheme:
use as many loops as you can get (µ2 > 5 GeV2 required?)

• comparison with lattice perturbation theory (one loop and two loops):

difficult to predict the accuracy of perturbative renormalisation factors
but improvement seems to work (in most cases)
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