Renormalisation of composite operators in lattice QCD: perturbative versus nonperturbative

M. Göckeler

Universität Regensburg

M.G., R. Horsley, Y. Nakamura, H. Perlt, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, A. Schiller, H. Stüben, J.M. Zanotti (QCDSF/UKQCD collaboration), arXiv:1003.5756

Introduction

renormalisation on the lattice: let bare parameters and renormalisation factors Z depend on the lattice spacing a in such a way that the limit $a \rightarrow 0$ is finite

 $\psi_{\mathrm{R}}(x) = Z_q(\mu, a)^{1/2} \psi(x)$ quark field $\mathcal{O}_{\mathrm{R}}(\mu) = Z(\mu, a) \mathcal{O}(a)$ composite operator like $\bar{\psi}\psi$

 μ : renormalisation scale

direct calculation of physical observables (e.g. hadron masses): Z factors unnecessary (cancel in physical quantities)

scheme and renormalisation scale dependent

Why then worry about Z factors?

It is not always possible to calculate the physical observables directly!

example: deep-inelastic lepton-nucleon scattering

ODE: atructure function Wilcon coefficient	hadronic	matrix	element	of
OPE. Structure function = wilson coefficient \otimes	a (local) o	compos	ite operat	tor

observable	short distance	long distance
	perturbative	non-perturbative

How to evaluate renormalisation factors on the lattice?

perturbative methods:

- standard perturbation theory (with or without improvement)
- numerical stochastic perturbation theory (higher orders)

nonperturbative methods:

- Schrödinger functional methods
- Rome-Southampton method RI-MOM scheme

G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa, A. Vladikas, NPB 445 (1995) 81

basic ingredients in the RI-MOM scheme:

three-point function of
$$\mathcal{O} = \bar{\psi} \cdots \psi$$
 in Landau gauge

$$G_{\alpha\beta}^{ij}(p) = \frac{a^{12}}{V} \sum_{x,y,z} e^{-ip \cdot (x-y)} \langle \psi_{\alpha}^{i}(x) \mathcal{O}(z) \bar{\psi}_{\beta}^{j}(y) \rangle \qquad S_{\alpha\beta}^{ij}(p) = \frac{a^{8}}{V} \sum_{x,y} e^{-ip \cdot (x-y)} \langle \psi_{\alpha}^{i}(x) \bar{\psi}_{\beta}^{j}(y) \rangle$$

V =lattice volume

vertex function: $\Gamma(p) = S^{-1}(p)G(p)S^{-1}(p)$

 \longrightarrow renormalised vertex function: $\Gamma_{\rm R}(p) = Z_q^{-1} Z \Gamma(p)$

RI-MOM renormalisation condition: $\frac{1}{12} \operatorname{tr}_{DC} \left(\Gamma_{\mathrm{R}}(p) \Gamma_{\mathrm{Born}}(p)^{-1} \right) \Big|_{p^2 = \mu^2} = 1$ in the chiral limit

 μ = renormalisation scale

renormalisation of the quark fields:
$$Z_q(p) = \frac{\operatorname{tr}\left(-i\sum_{\lambda}\gamma_{\lambda}\sin(ap_{\lambda})aS^{-1}(p)\right)}{12\sum_{\lambda}\sin^2(ap_{\lambda})}\Big|_{p^2=\mu^2}$$
 RI'-MOM

renormalised operator $Z O(a) \equiv Z_{\text{bare}}^{S}(\mu)O(a)$ (a dependence of Z suppressed) depends on the renormalisation scale μ and the renormalisation scheme S

scale and scheme independent (for $1/L^2 \ll \Lambda_{\rm QCD}^2 \ll \mu^2 \ll 1/a^2$):

$$Z^{\mathrm{RGI}} = \left(2\beta_0 \frac{g^{\mathcal{S}}(\mu)^2}{16\pi^2}\right)^{-\gamma_0/(2\beta_0)} \exp\left\{\int_0^{g^{\mathcal{S}}(\mu)} \mathrm{d}g \,\left(\frac{\gamma^{\mathcal{S}}(g)}{\beta^{\mathcal{S}}(g)} + \frac{\gamma_0}{\beta_0 g}\right)\right\} Z^{\mathcal{S}}_{\mathrm{bare}}(\mu) = \Delta Z^{\mathcal{S}}(\mu) Z^{\mathcal{S}}_{\mathrm{bare}}(\mu)$$

intermediate renormalisation scheme $S = \overline{MS}$, MOM, ... useful:

$$Z^{\text{RGI}} = \Delta Z^{\mathcal{S}}(\mu) Z^{\mathcal{S}}_{\text{RI'-MOM}}(\mu) Z^{\text{RI'-MOM}}_{\text{bare}}(\mu)$$

$$\uparrow \qquad \uparrow$$
continuum perturbation theory

expansion in $g^{\overline{\text{MS}}}$, $g^{\widetilde{\text{MOMgg}}}$ (K.G. Chetyrkin, A. Rétey, hep-ph/0007088), ...

Perturbative renormalisation on the lattice

- bare perturbation theory: $Z = 1 \frac{g^2}{16\pi^2} (\gamma_0 \ln(a\mu) + \Delta) + O(g^4)$ (often poorly convergent)
- tadpole-improved perturbation theory (for an operator with n_D covariant derivatives):

$$Z = u_0^{1-n_D} \left[1 - \frac{g_{\Box}^2}{16\pi^2} \left(\gamma_0 \ln(a\mu) + \Delta + (n_D - 1)\frac{4}{3}\pi^2 \right) + O(g^4) \right]$$

 $u_0=\langle rac{1}{3}{
m tr} U_{\Box}
angle^{1/4}$ taken from simulations, $g_{\Box}^2=g^2/u_0^4$ boosted coupling

• "tadpole-improved renormalisation-group-improved boosted perturbation theory" (TRB perturbation theory)

combining renormalisation group improvement with tadpole improvement

$$Z^{\text{RGI}} = u_0^{1-n_D} \left(2\beta_0 \frac{g_{\Box}^2}{16\pi^2} \right)^{-\gamma_0/(2\beta_0)} \left(1 + \frac{\beta_1}{\beta_0} \frac{g_{\Box}^2}{16\pi^2} \right)^{-(\gamma_1^{\Box}\beta_0 - \gamma_0\beta_1)/(2\beta_0\beta_1) + 16\pi^2\beta_0(1-n_D)/(12\beta_1)}$$

with $\gamma^{\Box}(g_{\Box}) = -a \frac{\mathrm{d}}{\mathrm{d}a} \ln Z_{\text{bare}}^{\mathcal{S}} = \gamma_0 \frac{g_{\Box}^2}{16\pi^2} + \gamma_1^{\Box} \left(\frac{g_{\Box}^2}{16\pi^2} \right)^2 + \cdots$

Subtraction of lattice artefacts

① standard calculation of Z in lattice perturbation theory neglects lattice artefacts: $a^2p^2 \ll 1$ (keeps only logarithmic a dependence)

our momenta usually do not satisfy this condition

(2) (one-loop) lattice perturbative results for arbitrary a^2p^2 : evaluate the loop integrals numerically (for each *p* separately)

use the difference between ① and ② to correct for the (perturbative) discretisation errors

scalar density, Landau gauge, $c_{\rm SW} = 1$

lattice artefacts for p along a lattice axis, $p \propto (0, 0, 0, 1)$, larger than for p along a diagonal, $p \propto (1, 1, 1, 1)$, of the Brillouin zone

The simulations

QCDSF-UKQCD configurations:

two degenerate flavours of clover fermions + plaquette action for the gauge field

four values of β :

eta	5.20	5.25	5.29	5.40
$a[\mathrm{fm}]$	0.086	0.079	0.075	0.067

3-5 quark masses per β

three-point function
$$G(p) = \frac{a^{12}}{V} \sum_{x,y,z} e^{-ip \cdot (x-y)} \langle \psi(x) \mathcal{O}(z) \overline{\psi}(y) \rangle$$
 (quark-line connected)

calculated with the help of momentum sources

- ☺ reduced statistical fluctuations, arbitrary operators
- $\textcircled{\sc opt}$ number of inversions \propto number of momenta

 $r_0 = 0.467 \,\mathrm{fm}$, $r_0 \Lambda_{\overline{\mathrm{MS}}} = 0.617$

Extracting the renormalisation factors

plateau (values independent of μ) in $Z^{\text{RGI}} = \Delta Z^{S}(\mu) Z^{S}_{\text{RI'-MOM}}(\mu) Z^{\text{RI'-MOM}}_{\text{bare}}(\mu)$ endangered by: truncation of perturbative expansion (μ small) lattice artefacts (μ large)

Can we separate truncation effects from lattice artefacts?

$$Z^{\mathcal{S}}_{\text{bare}}(\mu) \equiv Z^{\mathcal{S}}_{\text{RI'-MOM}}(\mu) Z^{\text{RI'-MOM}}_{\text{bare}}(\mu) = \Delta Z^{\mathcal{S}}(\mu)^{-1} Z^{\text{RGI}}(\mu) = \Delta Z^{$$

rescale $Z^{\mathcal{S}}_{\text{bare}}(\mu)$ data

collapse onto a single curve (up to lattice artefacts)

look for a plateau (values independent of μ) in

$$Z^{\rm RGI} = \Delta Z^{\mathcal{S}}(\mu) Z^{\mathcal{S}}_{\rm RI'-MOM}(\mu) Z^{\rm RI'-MOM}_{\rm bare}(\mu)$$

example: $\bar{\psi}\sigma_{\mu\nu}\psi$

available perturbative results cannot describe the scale dependence below 5 GeV²

finally: account for deviations from a perfect plateau by a fit for all four β values simultaneously altogether six fit parameters: Z^{RGI} at the four β values, two "effective" coefficients lattice artefacts, perturbative expansion

fits work only for subtracted data (exist only for operators with less than two derivatives)

in the other cases: read off Z^{RGI} at $\mu^2 = 20 \text{ GeV}^2$ (linearly interpolated) "interpolation method" error: maximum of the differences with the values at $\mu^2 = 10 \text{ GeV}^2$, 30 GeV^2 up to now: intermediate scheme S = MOM, expansion in the \widetilde{MOMgg} coupling

compare with $S = \overline{MS}$, expansion in the \overline{MS} coupling

example: $\bar{\psi}\sigma_{1\{2}\overset{\leftrightarrow}{D}_{3\}}\psi$

S = MOM with MOMgg coupling: filled squares $S = \overline{MS}$ with \overline{MS} coupling: open circles

Results: operators without derivatives

S: $\bar{\psi}\psi$ P: $\bar{\psi}\gamma_5\psi$ V: $\bar{\psi}\gamma_\mu\psi$ A: $\bar{\psi}\gamma_\mu\gamma_5\psi$ T: $\bar{\psi}\sigma_{\mu\nu}\psi$ $Z_q = Z_\psi$

 $\beta = 5.40$

filled circles: filled squares: filled triangles: open circles: open squares: open triangles: fit results (subtracted data) interpolation results (subtracted data) interpolation results (unsubtracted data) bare perturbation theory (one loop) tadpole-improved perturbation theory (one loop) TRB perturbation theory (one loop) Results: operators with one derivative

 $\beta = 5.40$

filled circles: filled squares: filled triangles: open circles: open squares: open triangles: fit results (subtracted data) interpolation results (subtracted data) interpolation results (unsubtracted data) bare perturbation theory (one loop) tadpole-improved perturbation theory (one loop) TRB perturbation theory (one loop) Results: operators with two derivatives

$$\beta = 5.40$$

filled triangles: open circles: open squares: open triangles: interpolation results (unsubtracted data) bare perturbation theory (one loop) tadpole-improved perturbation theory (one loop) TRB perturbation theory (one loop) Results: operators without derivatives compared with two-loop perturbation theory

crosses:	fit results (subtracted data)
circles:	bare perturbation theory
squares:	tadpole-improved perturbation theory
triangles:	TRB perturbation theory

open symbols: one loop

filled symbols: two loops

Concluding remarks

- NPR in the RI-MOM scheme: (relatively) easy to implement for arbitrary lattice fermions
- momentum sources: many operators in a single simulation small statistical errors, but CPU time \propto number of momenta
- choose momenta close to the diagonal of the Brillouin zone (discretisation effects!) still: perturbative subtraction of lattice artefacts very helpful, but not sufficient
- continuum perturbation theory needed for the conversion to the $\overline{\text{MS}}$ scheme: use as many loops as you can get ($\mu^2 > 5 \text{ GeV}^2$ required?)
- comparison with lattice perturbation theory (one loop and two loops): difficult to predict the accuracy of perturbative renormalisation factors but improvement seems to work (in most cases)