2 Flavor Chiral Perturbation Theory for Hyperons

Fu-Jiun Jiang [In Collaboration With B. Tiburzi and A. Walker-Loud]

Massachusetts Institute of Technology

June 15, 2010

Fu-Jiun Jiang (MIT)

Outline

- Motivation
- SU(2) Chiral Expansion for Hyperons
- Effects of Kaon Virtual Thresholds on Hyperon Observables
- Comparison Between *SU*(2) Chiral Expressions and Lattice Data of Spin-1/2 Hyperon Axial Charges
- Conclusions

Motivation

- Lattice QCD is the only known first principles nonperturbative approach to QCD
- Many lattice simulations done today are restricted to unphysically large quark masses, finite extend of box sizes and nonvanishing lattice spacings
- Chiral perturbation theory (χPT): extrapolate lattice data to the physical point
- The use of lattice QCD in conjunction with 2 flavor χPT enables one to understand nonstrange hadronic physics from first principles calculations quantitatively

- The success of 2-flavor χPT faces a great challenge when extended to include the effects of strange quark
- Various SU(3) predictions for hyperon properties compare poorly to experiment
- *p*-wave contribution to nonleptonic hyperon decays. $\Sigma^+ \rightarrow n\pi^+ : 1.81 \text{ (expt)}, 0.82 \text{ (theory)}$
- SU(3) expansion parameters in the (heavy) baryon sectors contains a term which scales as $m_{\eta}/M \sim 0.5$: m_{η} is the mass of η -meson and M is the average of hyperon mass
- Hence the efficacy of 3-flavor χPT is in question

SU(2) Chiral Expansion for Hyperons

- Several approaches are known to improve the *SU*(3) expansion
- Our approach is altogether different :
 - Based on the observation that it is possible to reorganize the 3-flavor expansion into a 2-flavor one thereby excluding the kaon and eta loops
- The strange quark dependence is resummed:
 - Absorbed into the leading low-energy constants (lec) of the underlying SU(2) theory
 - Arrise through power-law suppressed terms : $\sim (m/m_s)^n$ which are absorbed into lecs of pion mass dependence operators

• SU(3) HB χ PT : pion, kaon and eta loops

•
$$M_{\Sigma} = M^{SU(3)} + a_{\pi} m_{\pi}^2 + a_K m_K^2 + b_{\pi} m_{\pi}^3 + b_K m_K^3 + b_{\eta} m_{\eta}^3$$

Convergence : governed by $m_{\phi}^2/\Lambda_{\chi}^2$ and $m_{\phi}/M^{SU(3)}$

Gell-Mann-Oakes-Renner and Gell-Mann-okubo formulae :

$$egin{array}{rcl} m_K^2 &=& rac{1}{2}m_\pi^2+rac{1}{2}m_{\eta_s}^2\,, & m_\eta^2=rac{1}{3}m_\pi^2+rac{2}{3}m_{\eta_s}^2\ \epsilon_{SU(2)}=m_\pi^2/m_{\eta_s}^2\sim 0.04 \end{array}$$

•
$$M_{\Sigma} = M_{\Sigma}^{SU(2)} + a_{\pi}^{SU(2)} m_{\pi}^2 + b_{\pi}^{SU(2)} m_{\pi}^3 + \dots$$

Convergence : governed by m_π^2/Λ_χ^2 and $m_\pi/M^{SU(2)}$

- Non-analytic strange quark mass dependence is absorbed into the SU(2) low-energy constants
- The *SU*(2) expansion of kaon and eta loops generates only analytic contributions to pion mass squared

- Additional expansion parameters related to kaon production thresholds
- For the 2-flavor theory to be effective, the kaon production threshold cannot be reached
- Kaon and eta loops need not appear explicitly in the effective field theory
- Virtual kaon and eta loop contributions can be reordered
- Such a *SU*(2) theory can be used to describe the virtual strangeness changing transitions provided one is far away from these thresholds

- Consider a strangeness changing process : $B' \rightarrow KB$, $\Delta S = -1$
- $\delta_{BB'} = M_{B'} M_B$:
 - $\delta_{B'B} > m_K$: decay is kinemantically allowed
 - $\delta_{B'B} < m_K$: the process is virtual
- For an SU(2) description of hyperons to be valid, one must stay away from kaon production thresholds : $\delta_{B'B} \ll m_K$
- The largest $\delta_{B'B}$ is $\delta_{N\Sigma^{\star}} \sim 0.45 \text{GeV}$
- Must find a relevant expansion parameter so that an SU(2) description of hyperons is valid despite the nearness of thresholds for these physical splittings

• Terms in logarithm can be written as functions of the form :

$$f\left(m_{K}^{2}-\delta_{BB'}^{2}\right) = f\left(\frac{1}{2}m_{\eta_{s}}^{2}-\delta_{BB'}^{2}\right)+\frac{1}{2}m_{\pi}^{2}f'\left(\frac{1}{2}m_{\eta_{s}}^{2}-\delta_{BB'}^{2}\right) + \frac{1}{8}m_{\pi}^{4}f''\left(\frac{1}{2}m_{\eta_{s}}^{2}-\delta_{BB'}^{2}\right)+\dots$$

•
$$\epsilon_{BB'} = \frac{\frac{1}{2}m_{\pi}^2}{\frac{1}{2}m_{\eta_s}^2 - \delta_{B'B}^2}$$

- At LO order, using m_{ηs} estimated by GMOR and the physical splittings: ε_{BB'} < 0.24
- Beyond LO, one needs to find another relevant expansion parameter around the SU(2) chiral limit: $\epsilon_{BB'} < 0.35$

•
$$SU(3): m_{\eta}/M \sim 0.5$$

Effect of Kaon Virtual Thresholds on Hyperon Isovector Axial Charges

- $\Sigma^{\star} \to KN \to KN \to \Sigma^{\star}$
- Kaon-loop contributions are proportional to a non-analytic function ${\cal J}$:

$$\mathcal{J}(m_K^2, -\delta_{N\Sigma^{\star}}) = \mathcal{J}^{(0)} + m_{\pi}^2 \mathcal{J}^{(2)} + m_{\pi}^4 \mathcal{J}^{(4)} + \dots,$$

- Red : zeroth; Blue : first; Black : second
- Virtual kaon-loop contributions to hyperon axial charges are well-described by a *SU*(2) expansion
- The same nonanalytic function $\mathcal J$ appears in the Kaon-loop contributions to hyperon magnetic moments

Effect of Kaon Virtual Threshold on Hyperon Electric Charge Radii

- Other hyperon electromagnetic properties are more sensitive to the nearby kaon thresholds
- A SU(2) expansion for KN-loops is valid up to m_π = 300MeV for electric charge radius of Σ

Effect of Kaon Virtual Threshold on Hyperon Electric Charge Radii

- The efficacy of a SU(2) description for the electric charge radius of Σ* does not extend considerably far beyond the physical pion mass
- The failure is due to a pole structure related to the thresholds in these nonanalytic functions

2 Flavor χ PT for Hyperons

• Bands :
$$A'_{BB} g_{BB} \frac{\Delta_{BB^*} m_{\pi}^2}{M_B \Lambda_{\gamma}^2}$$
 (NNLO)

• $g_A \sim 1.2, \quad g_{\Sigma\Sigma} \sim 0.8, \quad g_{\Xi\Xi} \sim 0.2$ (Lin 2007)

• Lattice data points are better described by our *SU*(2) chiral formulae as the strangeness quantum number is increased

Fu-Jiun Jiang (MIT)

2 Flavor χ PT for Hyperons

Bands : NNLO

• Prediction :

•
$$\mu_{\Sigma^0} = 0.65$$
, $Re(\mu_{\Delta^0}) = -0.74$, $Re(\mu_{\Delta^-}) = -4.2$

•
$$2\mu_{\Sigma^0} = \mu_{\Sigma^+} + \mu_{\Sigma^-}, \quad 2\mu_{\Sigma^{*,0}} = \mu_{\Sigma^{*,+}} + \mu_{\Sigma^{*,-}}, \quad \mu_{\Delta^{++}} - \mu_{\Delta^{-}} = 3(\mu_{\Delta^+} - \mu_{\Delta^0})$$

Conclusions

- We show that the convergence of an *SU*(2) expansion for hyperons is improved over that of an *SU*(3) one
- We demonstrate that for certain hyperon observables, the virtual kaon-loop contributions are well-described by terms analytic in the pion mass squared
- $m_{\pi} \sim 330 \text{MeV}$: Hyperon axial charges, magnetic moments and mass
- $m_{\pi} \sim 160 \text{MeV}$: Hyperon electrimagnetic charge radii
- The convergence of our approach is getting better with increasing strangeness quantum number
- *p*-wave contributions to noleptonic hyperon decays

Table: Relative size of NLO loop contributions compared to experiment in SU(2) and SU(3) HB χ PT.

Theory	$\delta \mu_p$	$\delta \mu_n$	$\delta \mu_{\Sigma^+}$	$\delta \mu_{\Sigma^{-}}$	$\delta \mu_{\Lambda}$	$\delta \mu_{\Sigma \Lambda}$	$\delta \mu_{\Xi^0}$	$\delta \mu_{\Xi}$
$SU(3)$ HB χ PT	66%	41%	120%	21%	220%	74%	210%	176%
$SU(2)$ HB χ PT	39%	57%	17%	35%	0	18%	< 1%	< 19

- $\Sigma^+ \rightarrow n\pi^+ : 1.81 \text{ (expt) and } 0.82 \text{ (theory)}$
- $\Sigma^+ \rightarrow p \pi^0$: 1.17 (expt) and 0.36 (theory)

Table: Relations between octet baryon magnetic moments. The SU(3) HB χ PT results quoted are NLO values for the numerator divided by experimental values for the denominator. NLO expressions for the numerators are provided in the Appendix. The $\Delta\%$ is the relative percent difference of the HB χ PT calculation compared to the experimental value.

Relation	Experiment	$HB\chiPT$	$ \Delta\% $
LO (Coleman-Glashow)			
$(\mu_{\Sigma^{-}} - \mu_{\Xi^{-}})/(\mu_{\Sigma^{-}} + \mu_{\Xi^{-}}) = 0$	0.28	0.50	77%
$(\mu_n - 2\overline{\mu}_\Lambda)/(\mu_n + 2\mu_\Lambda) = 0$	0.22	0.61	180%
$(\mu_n - \mu_{\Xi^0})/(\mu_n + \mu_{\Xi^0}) = 0$	0.21	0.58	180%
$(\mu_p - \mu_{\Sigma^+})/(\mu_p + \mu_{\Sigma^+}) = 0$	0.064	0.21	230%
$(\mu_n + \mu_{\Sigma^-} + \mu_p) / (\mu_n + \mu_{\Sigma^-} - \mu_p) = 0$	0.048	0.14	190%
$(\sqrt{3}\mu_n + 2\mu_{\Sigma\Lambda})/(\sqrt{3}\mu_n - 2\mu_{\Sigma\Lambda}) = 0$	0.014	0.15	970%
NLO (Caldi-Pagels)			
$\mu_{p} + \mu_{\Xi^{0}} + \mu_{\Xi^{-}} + \mu_{n} - 2\mu_{\Lambda} = 0$			
$\frac{1}{\mu_p - \mu_{\Xi^0} - \mu_{\Xi^-} - \mu_n + 2\mu_\Lambda} \equiv 0$	0.038	0	-
$\frac{\sqrt{3\mu_{\Sigma\Lambda}+\mu_{\Xi0}+\mu_n-\mu_{\Lambda}}}{\sqrt{3\mu_{\Sigma\Lambda}-\mu_{T0}-\mu_n-\mu_{\Lambda}}}=0$	0.036	0	-
$(\mu_{\Sigma^+} + \mu_{\Sigma^-} + 2\mu_{\Lambda})/(\mu_{\Sigma^+} - \mu_{\Sigma^-} - 2\mu_{\Lambda}) = 0$	0.015	0	-
NNLO (Okubo)			
$\ (\mu_{\Sigma^+} + \mu_{\Sigma^-} - 2\mu_{\Sigma^0}) / (\mu_{\Sigma^+} - \mu_{\Sigma^-} + 2\mu_{\Sigma^0}) = 0$	-	0	-
$ \frac{6\mu_{\Lambda} + \mu_{\Sigma^{+}} + \mu_{\Sigma^{-}} - 4\mu_{\Xi^{0}} - 4\mu_{n} - 4\sqrt{3}\mu_{\Sigma\Lambda}}{6\mu_{\Lambda} - \mu_{\Sigma^{+}} + \mu_{\Sigma^{-}} + 4\mu_{\Xi^{0}} + 4\mu_{n} - 4\sqrt{3}\mu_{\Sigma\Lambda}} = 0 $	0.028	0	-

$$\mathcal{L}_{2}^{(S=1)} = \overline{\Lambda} (iv \cdot \partial) \Lambda + \operatorname{tr} \left[\overline{\Sigma} (iv \cdot \mathcal{D} - \Delta_{\Lambda \Sigma}) \Sigma \right] - \left(\overline{\Sigma}^{*\mu} \left[iv \cdot \mathcal{D} - \Delta_{\Lambda \Sigma^{*}} \right] \Sigma_{\mu}^{*} \right)$$

$$\mathcal{L}^{(S=1)} = g_{\Sigma\Sigma} \operatorname{tr} \left(\overline{\Sigma} S^{\mu} \left[A_{\mu}, \Sigma \right] \right) + 2g_{\Sigma^{*}\Sigma^{*}} \left(\overline{\Sigma}^{*\mu} S \cdot A \Sigma_{\mu}^{*} \right) + g_{\Sigma^{*}\Sigma} \left(\overline{\Sigma}^{*\mu} A_{\mu} \Sigma + \overline{\Sigma} A^{\mu} \Sigma_{\mu}^{*} \right) + \sqrt{\frac{2}{3}} g_{\Lambda\Sigma} \left[\operatorname{tr} \left(\overline{\Sigma} S \cdot A \right) \Lambda + \overline{\Lambda} \operatorname{tr} \left(S \cdot A \Sigma \right) \right] + g_{\Sigma^{*}\Lambda} \left[\left(\overline{\Sigma}^{*\mu} A_{\mu} \right) \Lambda + \overline{\Lambda} \left(A^{\mu} \Sigma_{\mu}^{*} \right) \right]$$

$$\mathcal{L}_{2}^{(S=2)} = \overline{\Xi} \, iv \cdot \mathcal{D} \, \Xi - \overline{\Xi}^{*\mu} \left(iv \cdot \mathcal{D} - \Delta_{\Xi\Xi^{*}} \right) \Xi_{\mu}^{*}$$

 $\mathcal{L}^{(S=2)} = 2g_{\Xi\Xi}\,\overline{\Xi}\,S \cdot A\,\Xi + 2g_{\Xi^*\Xi^*}\,\overline{\Xi}^{*\mu}\,S \cdot A\,\Xi^*_\mu + g_{\Xi^*\Xi}\left(\overline{\Xi}^{*\mu}\,A_\mu\,\Xi + \overline{\Xi}\,A^\mu\,\Xi^*_\mu\right)$

$$F(\delta) \equiv F(\delta, m_{\pi}) = -\delta \log\left(\frac{m_{\pi}^2}{4\delta^2}\right) + \sqrt{\delta^2 - m_{\pi}^2} \log\left(\frac{\delta - \sqrt{\delta^2 - m_{\pi}^2 + i\varepsilon}}{\delta + \sqrt{\delta^2 - m_{\pi}^2 + i\varepsilon}}\right)$$

$$\begin{split} G_{\Sigma\Sigma} &= g_{\Sigma\Sigma} + \frac{1}{\Lambda_{\chi}^{2}} \Big[A_{\Sigma\Sigma}(\mu) m_{\pi}^{2} - (7g_{\Sigma\Sigma}^{3} + 4g_{\Sigma\Sigma}) \mathcal{J}(0,\mu) + \frac{2}{3} g_{\Sigma\Sigma} g_{\Lambda\Sigma}^{2} \mathcal{K}(-\Delta_{\Lambda\Sigma},\mu) \\ &- g_{\Sigma\Sigma} g_{\Lambda\Sigma}^{2} \mathcal{J}(-\Delta_{\Lambda\Sigma},\mu) - \frac{8}{3} \sqrt{\frac{2}{3}} g_{\Sigma^{*}\Sigma} g_{\Lambda\Sigma} g_{\Lambda\Sigma} \mathcal{K}(-\Delta_{\Lambda\Sigma},\Delta_{\Sigma\Sigma^{*}},\mu) \\ &- \Big(\frac{10}{9} g_{\Sigma^{*}\Sigma^{*}} + 4g_{\Sigma\Sigma} \Big) g_{\Sigma^{*}\Sigma}^{2} \mathcal{J}(\Delta_{\Sigma\Sigma^{*}},\mu) \Big], \\ G_{\Lambda\Sigma} &= g_{\Lambda\Sigma} + \frac{1}{\Lambda_{\chi}^{2}} \Big[A_{\Lambda\Sigma}(\mu) m_{\pi}^{2} - 4g_{\Lambda\Sigma} \mathcal{J}(0,\mu) - 6g_{\Lambda\Sigma} g_{\Lambda\Sigma^{*}}^{2} \mathcal{J}(\Delta_{\Lambda\Sigma^{*}},\mu) \\ &+ 2g_{\Lambda\Sigma} g_{\Sigma\Sigma}^{2} \mathcal{K}(\Delta_{\Lambda\Sigma},\mu) - 3g_{\Lambda\Sigma} g_{\Sigma\Sigma}^{2} \mathcal{J}(0,\mu) - \frac{1}{3} g_{\Lambda\Sigma}^{3} \mathcal{I}(\Delta_{\Lambda\Sigma},-\Delta_{\Lambda\Sigma},\mu) \\ &- 8\sqrt{\frac{2}{3}} g_{\Sigma\Sigma} g_{\Sigma^{*}\Sigma} g_{\Lambda\Sigma^{*}} \mathcal{K}(\Delta_{\Lambda\Sigma^{*}},\mu) \\ &+ \frac{20}{3} \sqrt{\frac{2}{3}} g_{\Sigma^{*}\Sigma^{*}} g_{\Sigma^{*}\Sigma} g_{\Lambda\Sigma^{*}} \mathcal{I}(\Delta_{\Lambda\Sigma^{*}},\Delta_{\Sigma\Sigma^{*}},\mu) - 2g_{\Lambda\Sigma} g_{\Sigma^{*}\Sigma}^{2} \mathcal{J}(\Delta_{\Sigma\Sigma^{*}},\mu) \\ &- \frac{3}{2} g_{\Lambda\Sigma}^{3} \mathcal{J}(\Delta_{\Lambda\Sigma},\mu) - \frac{1}{2} g_{\Lambda\Sigma}^{3} \mathcal{J}(-\Delta_{\Lambda\Sigma},\mu) \\ &+ \frac{8}{3} g_{\Lambda\Sigma} g_{\Lambda\Sigma^{*}}^{2} \mathcal{I}(\Delta_{\Lambda\Sigma^{*}},-\Delta_{\Delta\Sigma},\mu) - \frac{8}{3} g_{\Lambda\Sigma} g_{\Sigma^{*}\Sigma}^{2} \mathcal{I}(\Delta_{\Lambda\Sigma},\Delta_{\Sigma\Sigma^{*}},\mu) \Big], \end{split}$$

Fu-Jiun Jiang (MIT)

$$\begin{split} G_{\Xi\Xi} &= g_{\Xi\Xi} + \frac{1}{\Lambda_{\chi}^{2}} \Big[A_{\Xi\Xi}(\mu) m_{\pi}^{2} - 4(2g_{\Xi\Xi}^{3} + g_{\Xi\Xi}) \mathcal{J}(0,\mu) \\ &- \Big(6g_{\Xi\Xi} + \frac{10}{9} g_{\Xi^{*}\Xi^{*}} \Big) g_{\Xi^{*}\Xi}^{2} \mathcal{J}(\Delta_{\Xi\Xi^{*}},\mu) - \frac{8}{3} g_{\Xi\Xi} g_{\Xi^{*}\Xi}^{2} \mathcal{K}(\Delta_{\Xi\Xi^{*}},\mu) \Big]. \\ G_{A} &= g_{A} + \frac{1}{\Lambda_{\chi}^{2}} \Big[A_{NN}(\mu) m_{\pi}^{2} - 4(2g_{A}^{3} + g_{A}) \mathcal{J}(0,\mu) \\ &+ \frac{64}{9} g_{A} g_{\Delta N}^{2} \mathcal{K}(\Delta,\mu) - 8 \Big(g_{A} + \frac{25}{81} g_{\Delta \Delta} \Big) g_{\Delta N}^{2} \mathcal{J}(\Delta,\mu) \Big] \end{split}$$

Input Parameters		Source
$\Delta=290{ m MeV}$	$\Delta_{\Lambda\Sigma}=77{ m MeV}$	Expt.
$\Delta_{\Lambda\Sigma^*}=270{ m MeV}$	$\Delta_{\Xi\Xi^*}=215{ m MeV}$	
$G_A(139\mathrm{MeV})=1.27$	$G_{\Lambda\Sigma}(139{ m MeV})=1.47$	Expt.
$g_{\Delta N} = 1.48$	$g_{\Lambda\Sigma^*} = -0.91$	
$g_{\Sigma^*\Sigma} = 0.76$	$g_{\Xi^*\Xi} = 0.69$	
$g_{\Delta\Delta} = -2.2$ $g_{\Sigma^*\Sigma^*} =$	$-1.47 g_{\Xi^*\Xi^*} = -0.73$	<i>SU</i> (3) (Butler 1992)
$G_{\Sigma\Sigma}(139{ m MeV})=0.78$	$G_{\Xi\Xi}(139\mathrm{MeV})=0.24$	Extrap. (Lin 2007)

Output	Parameter	Estimates
--------	-----------	-----------

$A_{NN}(\Lambda_{\chi}) = -12.0$
$A_{\Sigma\Sigma}(\Lambda_{\chi}) = -2.9$
_
$A_{\Xi\Xi}(\Lambda_{\chi}) = -0.22$