Classification and Generalization of Minimal-doubling Actions

Tatsuhiro MISUMI YITP and BNL

M. Creutz(BNL) and T. Misumi, work in progress
(T. Kimura(UT) and T. Misumi, PTP 2010)

Lattice2010@Villasimius in Italy

Introduction

- Doubling problem : obstacle to simulations

Several ways to bypass No-Go theorem, but....

- Wilson (broken chiral sym.)
- DW or Overlap (Non-locality)
- Staggered (4 tastes)

Mass renormalization
Numerical expense
Rooting procedure
> Another possibility : Minimally doubled fermion
i) 2 flavors
ii) Exact chiral: $U(1)_{A} \subset S U(2)$
iii) Strict locality
$\leftarrow 4$ in Staggered
\leftarrow Broken in Wilson
\leftarrow Not strict in DW or Overlap
> Two known classes

- Karsten-Wilczek fermion

CT, P, Cubic

$$
\begin{aligned}
D(p)= & \sin p_{1} i \gamma_{1} \\
& +\sin p_{2} i \gamma_{2} \\
& +\sin p_{3} i \gamma_{3} \\
& +\left(\sin p_{4}+\cos p_{1}+\cos p_{2}+\cos p_{3}-3\right) i \gamma_{4}
\end{aligned}
$$

- Borici-Creutz fermion CTP, S4

$$
\begin{aligned}
D(p)= & \left(\sin p_{1}+\sin p_{2}-\sin p_{3}-\sin p_{4}\right) i \gamma_{1} \\
& +\left(\sin p_{1}-\sin p_{2}-\sin p_{3}+\sin p_{4}\right) i \gamma_{2} \\
& +\left(\sin p_{1}-\sin p_{2}+\sin p_{3}-\sin p_{4}\right) i \gamma_{3} \\
& +B\left(4 C-\cos p_{1}-\cos p_{2}-\cos p_{3}-\cos p_{4}\right) i \gamma_{4}
\end{aligned}
$$

Lack of discrete symmetry requires fine-tuning of parameters.....
P. F. Bedaque, et.al., (2008)
S. Capitani, et al., (2009)

By classifying possible classes of minimal-doubling actions, we search for possibility of application.

Table of Contents

1. Minimal-doubling actions
2. A New Class: Twisted-Ordering
3. Higher dimensions
4. Summary and discussion

1. Minimal-doubling actions

A general form of chirally-symmetric O (a) Dirac operator.

$$
D(p)=i \gamma_{\mu} R_{\mu \nu} \sin p_{\nu}+i \gamma_{\mu} R_{\mu \nu}^{\prime} \cos p_{\nu}+\sum_{\nu} i \gamma_{\mu} R_{\mu \nu}^{\prime \prime}
$$

Three matrices ($R, R^{\prime}, R^{\prime \prime}$) characterize the operator.
$>$ Advantage of this form : Easy to see discrete symmetry

Find another class of Minimal-doubling actions in this framework.
> Karsten-Wilczek action CT, P, Cubic

$$
R=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad R^{\prime}=-\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\lambda & \lambda & \lambda & 0
\end{array}\right), \quad R^{\prime \prime}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\lambda & \lambda & \lambda & 0
\end{array}\right)
$$

$>$ Creutz action CPT, S_{4}

$$
R=\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right), \quad R^{\prime}=-\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
B & B & B & B
\end{array}\right), \quad R^{\prime \prime}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
B C & B C & B C & B C
\end{array}\right)
$$

(Borici action)

$$
R=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad R^{\prime}=\frac{1}{2}\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right), \quad R^{\prime \prime}=-\frac{1}{2}\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right)
$$

2. Twisted-Ordering

Starting with one simple O (a) Dirac op

$$
\begin{aligned}
D(p) & =\left(\sin p_{1}+\cos p_{1}-1\right) i \gamma_{1} \\
& +\left(\sin p_{2}+\cos p_{2}-1\right) i \gamma_{2} \\
& +\left(\sin p_{3}+\cos p_{3}-1\right) i \gamma_{3} \\
& +\left(\sin p_{4}+\cos p_{4}-1\right) i \gamma_{4}
\end{aligned}
$$

- Number of zeros (species)

$$
\tilde{p}_{\mu}=0 \text { or } \pi / 2
$$

Just similar to the naive action except for $O(a)$ terms.

2. Twisted-Ordering

Permuting $O(a)$ terms

$$
\begin{aligned}
D(p) & =\left(\sin p_{1}+\cos p_{1}-1\right) i \gamma_{1} \\
& +\left(\sin p_{2}+\cos p_{2}-1\right) i \gamma_{2} \\
& +\left(\sin p_{3}+\cos p_{4}-1\right) i \gamma_{3} \\
& +\left(\sin p_{4}+\cos \hat{p}_{3}-1\right) i \gamma_{4}
\end{aligned}
$$

2. Twisted-Ordering

Permuting O (a) terms

$$
\begin{aligned}
D(p) & =\left(\sin p_{1}+\cos p_{1}-1\right) i \gamma_{1} \\
& +\left(\sin p_{2}+\cos p_{2}-1\right) i \gamma_{2} \\
& +\left(\sin p_{3}+\cos p_{4}-1\right) i \gamma_{3} \\
& +\left(\sin p_{4}+\cos p_{3}-1\right) i \gamma_{4}
\end{aligned}
$$

- Number of zeros (species)

$$
\tilde{p}_{1}=0 \text { or } \pi / 2, \quad \tilde{p}_{2}=0 \text { or } \pi / 2, \quad\left(\tilde{p}_{3}, \tilde{p}_{4}\right)=(0,0) \text { or }(\pi / 2, \pi / 2)
$$

Twisted-ordering reduces the number of species !

2. Twisted-Ordering

Permuting O (a) terms twice

$$
\begin{aligned}
D(p)= & \left(\sin p_{1}+\cos p_{2}-1\right) i \gamma_{1} \\
& +\left(\sin p_{2}+\cos \hat{p}_{1}-1\right) i \gamma_{2} \\
& +\left(\sin p_{3}+\cos p_{4}-1\right) i \gamma_{3} \\
& +\left(\sin p_{4}+\cos \hat{p}_{3}-1\right) i \gamma_{4}
\end{aligned}
$$

2. Twisted-Ordering

Permuting $O(a)$ terms twice

$$
\begin{aligned}
D(p) & =\left(\sin p_{1}+\cos p_{2}-1\right) i \gamma_{1} \\
& +\left(\sin p_{2}+\cos p_{1}-1\right) i \gamma_{2} \\
& +\left(\sin p_{3}+\cos p_{4}-1\right) i \gamma_{3} \\
& +\left(\sin p_{4}+\cos p_{3}-1\right) i \gamma_{4}
\end{aligned}
$$

- Number of zeros (species)

$$
\left(\tilde{p}_{1}, \tilde{p}_{2}\right)=(0,0) \text { or }(\pi / 2, \pi / 2) \quad\left(\tilde{p}_{3}, \tilde{p}_{4}\right)=(0,0) \text { or }(\pi / 2, \pi / 2)
$$

More twisted-orderings reduce more species !

2. Twisted-Ordering

Permuting $O(a)$ terms in a cyclic way

$$
\begin{aligned}
D(p)= & \left(\sin p_{1}+\cos p_{2}-1\right) i \gamma_{1} \\
& +\left(\sin p_{2}+\cos \hat{p}_{3}-1\right) i \gamma_{2} \\
& +\left(\sin p_{3}+\cos \hat{p}_{4}-\left(\begin{array}{l}
1) i \gamma_{3} \\
1 \\
\\
\end{array}+\left(\sin p_{4}+\cos \hat{p}_{1}--i \gamma_{4}\right.\right.\right.
\end{aligned}
$$

2. Twisted-Ordering

Permuting $O(a)$ terms in a cyclic way

$$
\begin{aligned}
D(p) & =\left(\sin p_{1}+\overline{\cos p_{2}}-1\right) i \gamma_{1} \\
& +\left(\sin p_{2}+\cos p_{3}-1\right) i \gamma_{2} \\
& +\left(\sin p_{3}+\cos p_{4}-1\right) i \gamma_{3} \\
& +\left(\sin p_{4}+\cos p_{1}-1\right) i \gamma_{4}
\end{aligned}
$$

- Number of zeros (species)

$$
\tilde{p}_{\mu}=(0,0,0,0),(\pi / 2, \pi / 2, \pi / 2, \pi / 2) \quad 2
$$

Minimal-doubling !
(On the orthogonal lattice)

- 2d
i) Untwisted case

$$
\begin{aligned}
D(p) & =\underline{\left(\sin p_{1}+\cos p_{1}-1\right)} i \gamma_{1} \\
& +\underline{\left(\sin p_{2}+\cos p_{2}-1\right)} i \gamma_{2}
\end{aligned}
$$

zeros: $(0,0),(0, \pi / 2),(\pi / 2,0),(\pi / 2, \pi / 2)$
ii) Twisted case

$$
\begin{aligned}
D(p) & =\underline{\left(\sin p_{1}+\cos p_{2}-1\right)} i \gamma_{1} \\
& +\underline{\left(\sin p_{2}+\cos p_{1}-1\right)} i \gamma_{2}
\end{aligned}
$$

zeros: $(0,0)(\pi / 2, \pi / 2)$
Minimal number of species!

- Two choices to place a parameter

1. t-parameter

$$
\begin{aligned}
D(p)= & \left(\sin p_{1}+\cos p_{2}-1\right) i \gamma_{1} \\
& +\left(\sin p_{2}+\cos p_{3}-1\right) i \gamma_{2} \\
& +\left(\sin p_{3}+\cos p_{4}-1\right) i \gamma_{3} \\
& +\left(\sin p_{4}+t\left(\cos p_{1}-1\right)\right) i \gamma_{4}
\end{aligned}
$$

One of zeros shifts with t.

$$
0 \leq t \leq 1
$$

$(\pi / 2, \pi / 2, \pi / 2, \pi / 2)$

- Symmetries

Common with all Minimal-doubling actions. P.F.Bedaque, et.al., PLB 662, 449 (2008)
> Discrete symmetries

$$
\begin{array}{llll}
t=0: & C P & T & Z_{2}
\end{array} \quad \text { First } C P \text {-invariant MD action }
$$

Fine-tuning to cancel redundant operators is still required.

Note: Flavored C, P or T may exist.

2. α-parameter

$$
\begin{aligned}
D(p)= & \left(\sin p_{1}+\cos p_{2}-\alpha\right) i \gamma_{1} \\
& +\left(\sin p_{2}+\cos p_{3}-\alpha\right) i \gamma_{2} \\
& +\left(\sin p_{3}+\cos p_{4}-\alpha\right) i \gamma_{3} \\
& +\left(\sin p_{4}+\cos p_{1}-\alpha\right) i \gamma_{4}
\end{aligned}
$$

Minimal-doubling persists within

$$
0<\alpha<\sqrt{2}
$$

"cut" solution

$p^{\wedge} 2$ dispersion arises

One mutilated pole

A small α leads to unphysical dispersion relation. ($d=2 n$)

- Gauged action in position space

$$
\begin{aligned}
S=\frac{1}{2} \sum_{n, \mu}\left[\overline { \psi } _ { n } \gamma _ { \mu } \left(U_{n, \mu} \psi_{n+\mu}-\right.\right. & \left.U_{n-\mu, \mu}^{\dagger} \psi_{n-\mu}\right) \\
& +i \bar{\psi}_{n} \xrightarrow{\left.\gamma_{\mu-1}\left(U_{n, \mu} \psi_{n+\mu}+U_{n-\mu, \mu}^{\dagger} \psi_{n-\mu}-\alpha \psi_{n}\right)\right]} \text { Twisted }
\end{aligned}
$$

We term this mechanism Twisted-Ordering.

Minimal-doubling action with chiral symmetry and strict locality on orthogonal lattices !

Note: Maximally Twisted-Ordering \rightarrow Minimal-doubling Partially Twisted-Ordering $\rightarrow 4$ or 8 species

3. Higher dimensions

$>$ Clifford algebra in even dimensions

T. Kimura and T. Misumi (2009)

$$
\begin{aligned}
& \Gamma_{\mu}^{(2 m)}=\tau_{1} \otimes \Gamma_{\mu}^{(2 m-2)}=\left(\begin{array}{cc}
0 & \Gamma_{\mu}^{(2 m-2)} \\
\Gamma_{\mu}^{(2 m-2)} & 0
\end{array}\right) \quad \text { for } \quad \mu=1, \cdots, 2 m-1, \\
& \Gamma_{2 m}^{(2 m)}=\tau_{2} \otimes \mathbb{1}_{\left[2^{m-1}\right]}=\left(\begin{array}{cc}
0 & -i \mathbb{1}_{\left[2^{m-1}\right]} \\
i \mathbb{1}_{\left[2^{m-1}\right]} & 0
\end{array}\right), \quad \Gamma_{2 m+1}^{(2 m)}=\tau_{3} \otimes \mathbb{1}_{\left[2^{m-1}\right]}=\left(\begin{array}{cc}
\mathbb{1}_{\left[2^{m-1}\right]} & 0 \\
0 & -\mathbb{1}_{\left[2^{m-1}\right]}
\end{array}\right)
\end{aligned}
$$

Cf.) Creutz action ($d=2 m$)

$$
\begin{aligned}
S_{\mathrm{C}}=\frac{1}{2} \sum_{x}\left[\sum_{\mu=1}^{2 m}\right. & \left(\bar{\psi}_{x-\mathrm{a}_{\mu}}^{A}\left(\Sigma^{(2 m)} \cdot \mathrm{e}^{\mu}\right) \psi_{x}^{B}-\bar{\psi}_{x+\mathrm{a}_{\mu}}^{B}\left(\Sigma^{(2 m)} \cdot \mathrm{e}^{\mu}\right) \psi_{x}^{A}\right. \\
& \left.-\bar{\psi}_{x+\mathrm{a}_{\mu}}^{A}\left(\bar{\Sigma}^{(2 m)} \cdot \mathrm{e}^{\mu}\right) \psi_{x}^{B}+\bar{\psi}_{x-\mathrm{a}_{\mu}}^{B}\left(\bar{\Sigma}^{(2 m)} \cdot \mathrm{e}^{\mu}\right) \psi_{x}^{A}\right) \\
& +\bar{\psi}_{x}^{A}\left(\Sigma^{(2 m)} \cdot \mathrm{e}^{2 m+1}\right) \psi_{x}^{B}-\bar{\psi}_{x}^{B}\left(\Sigma^{(2 m)} \cdot \mathrm{e}^{2 m+1}\right) \psi_{x}^{A} \\
& \left.-\bar{\psi}_{x}^{A}\left(\bar{\Sigma}^{(2 m)} \cdot \mathrm{e}^{2 m+1}\right) \psi_{x}^{B}+\bar{\psi}_{x}^{B}\left(\bar{\Sigma}^{(2 m)} \cdot \mathrm{e}^{2 m+1}\right) \psi_{x}^{A}\right]
\end{aligned}
$$

$>$ Minimal-doubling range of parameters

- Creutz $(d=2 m) \quad \underline{\frac{m-1}{m}}<C<1 \quad m=2 \rightarrow 4 d$ case
- K-W (extended version) $\quad i \gamma_{4} \sum_{\mu}\left(r-\cos p_{\mu}\right)$

$$
\frac{d+\sqrt{2}-3}{d}<r<\frac{d+\sqrt{2}-1}{d}
$$

Minimal-doubling range tends to be narrower with d.
More species need to be eliminated for higher dim.

- TO (α-parameter) $\underline{0<\alpha<\sqrt{2} \quad \text { for any } d=2 m}$

Special case! \rightarrow Twisted-ordering itself excludes species.

4. Summary and Discussion

I. Twisted-ordering reduces species in any dimensions.
II. Maximally-Twisted-ordering produces Minimal-doubling actions.
> Three classes

1. Karsten-Wilczek

CT, P, Cubic, Z_{2}
2. Creutz-Borici

CPT, S_{4}, Z_{2}
3. Twisted-Ordering

$$
\begin{aligned}
& t=0: \underline{C P, ~ T, ~ Z 2} \\
& t=1: \underline{C P T}, Z_{4}, Z_{2}
\end{aligned}
$$

Which is best for application?
Minimize fine-tune parameters?
A general form?
S. Capitani, et al., (2010)

Talk by S. Capitani,
Poster by J. Weber.

- Candidate for a general form

$$
\begin{aligned}
D(p) & =i \sum_{\mu}\left[\gamma_{\mu} \sin \left(p_{\mu}+\beta_{\mu}\right)-\gamma_{\mu}^{\prime} \sin \left(p_{\mu}-\beta_{\mu}\right)\right]-i \Gamma \\
& \gamma_{\mu}^{\prime}=A_{\mu \nu} \gamma_{\nu} \Rightarrow \text { Another gamma matrix } \\
& \beta_{\mu} \Rightarrow \text { two zeros } \pm \beta_{\mu} \\
& A_{\mu \nu} \sin 2 \beta_{\nu}=\sin 2 \beta_{\mu}
\end{aligned}
$$

Borici and some TO actions are unified in this form.

Drawbacks: Including PTO too
Not including t-cases of TO and K-W
We need to search more to find a general form...

Appendix 1. General form

$>$ Borici action

$$
\beta_{\mu}=\pi / 4 \quad A=\frac{1}{2}\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right)
$$

$>$ Twisted-Ordering action

$$
\beta_{\mu}=\pi / 4 \quad A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Note there are equivalent actions

$$
p_{\mu} \rightarrow p_{\mu}+\alpha_{\mu} \quad \gamma_{\mu} \rightarrow C_{\mu \nu} \gamma_{\nu}
$$

Appendix 2. Redundant operators

KW fermion

Relevant: $\mathcal{O}_{3}=\bar{\psi} i \gamma_{4} \psi$

Marginal: \begin{tabular}{l}
$\mathcal{O}_{4}^{(1)}=F_{\mu \nu} F_{\mu \nu}$

$\mathcal{O}_{4}^{(2)}=F_{4 \mu} F_{4 \mu}$

\hline $\mathcal{O}_{4}^{(3)}=\bar{\psi} D_{4} \gamma_{4} \psi$

$\mathcal{O}_{4}^{(4)}=\bar{\psi} D_{\mu} \gamma_{\mu} \psi$

\quad

Ren. for

\hline speed of light
\end{tabular}

BC fermion
Relevant: $\mathcal{O}_{3}^{(1)}=\bar{Q}\left(\gamma_{4} \otimes \tau^{3}\right) Q$

$$
\mathcal{O}_{3}^{(2)}=\bar{Q}\left(\gamma_{4} \gamma_{5} \otimes \tau^{3}\right) Q
$$

Marginal: $\mathcal{O}_{4}^{(1)}=F_{\mu \nu} F_{\mu \nu}$

$$
\mathcal{O}_{4}^{(2)}=F_{4 \mu} F_{4 \mu}
$$

$$
\mathcal{O}_{4}^{(3)}=F_{\mu \nu} \tilde{F}_{\mu \nu}
$$

$$
\mathcal{O}_{4}^{(4)}=F_{4 \mu} \tilde{F}_{4 \mu}
$$

$$
\mathcal{O}_{4}^{(5)}=\bar{Q}\left(\gamma_{\mu} \otimes \mathbf{1}\right) D_{\mu} Q
$$

$$
\mathcal{O}_{4}^{(6)}=\bar{Q}\left(\gamma_{4} \otimes \mathbf{1}\right) D_{4} Q
$$

$$
\mathcal{O}_{4}^{(5)}=\bar{Q}\left(i \gamma_{\mu} \gamma_{5} \otimes \mathbf{1}\right) D_{\mu} Q
$$

$$
\mathcal{O}_{4}^{(6)}=\bar{Q}\left(i \gamma_{4} \gamma_{5} \otimes \mathbf{1}\right) D_{4} Q
$$

Twisted-Ordering fermion ($\mathrm{t}=0$)

Relevant: $\quad \mathcal{O}_{3}=\bar{\psi} i \gamma_{j} \psi \quad(j=1,2,3)$

Marginal:

$$
\begin{array}{|l}
\hline \mathcal{O}_{4}^{(1)}=\bar{\psi} \gamma_{\mu} D_{\mu} \psi \\
\mathcal{O}_{4}^{(2)}=\bar{\psi} \gamma_{j} D_{j} \psi \\
\hline \mathcal{O}_{4}^{(3)}=F_{\mu \nu} F_{\mu \nu} \\
\mathcal{O}_{4}^{(4)}=F_{j \nu} F_{j \mu} \\
\hline
\end{array}
$$

Renormalization for the speed of light

The number of fine tuning parameters is as few as KW fermion.

Appendix 3. KW and BC actions

- Karsten-Wilczek fermion

$$
D(p)=i \sum_{\mu=1}^{4} \gamma^{\mu} \sin p_{\mu}+i \lambda \gamma^{4} \sum_{j=1}^{3}\left(1-\cos p_{j}\right) \quad \square \text { Two zeros: } \begin{aligned}
& (0,0,0,0) \\
& (0,0,0, \pi)
\end{aligned}
$$

One direction specified
\rightarrow Hypercubic $\times \rightarrow$ cubic
$>C, T \times$
Redundant operators ($\psi \gamma \psi, \psi \gamma D \psi$, etc)

Fine tuning required for a continuum limit!

- Creutz action м. Creutz (2007)

$$
\begin{aligned}
D(p)= & \left(\sin p_{1}+\sin p_{2}-\sin p_{3}-\sin p_{4}\right) i \gamma_{1} \\
+ & \left(\sin p_{1}-\sin p_{2}-\sin p_{3}+\sin p_{4}\right) i \gamma_{2} \\
+ & \left(\sin p_{1}-\sin p_{2}+\sin p_{3}-\sin p_{4}\right) i \gamma_{3} \\
& +B\left(4 C-\cos p_{1}-\cos p_{2}-\cos p_{3}-\cos p_{4}\right) i \gamma_{4}
\end{aligned}
$$

(a)

(b)

$>$ Karsten-Smit theorem (No-go theorem on cubic lattices)

Conditions of the no-go theorem
$+$
Permutation sym.of 4 axes: S4 (Hypercubic Symmetry)

16 doublers
(2^{d} in general dimensions)
cf.) Staggered fermion $16 \Rightarrow 4$
Hypercubic Symmetry $\times \rightarrow$ Twisted HS O

-Generalized Creutz action

$$
S=\frac{1}{2} \sum_{x}\left[\sum_{\mu=1}^{4}\left(\bar{\psi}_{x} \Gamma \cdot \boldsymbol{e}^{\mu} \psi_{x+\hat{\mu}}-\bar{\psi}_{x+\hat{\mu}} \bar{\Gamma} \cdot \boldsymbol{e}^{\mu} \psi_{x}\right)+2 i t \bar{\psi}_{x} \gamma^{4} \psi_{x}\right]
$$

i) 4 spinor vectors ii) On-site term \propto any of gamma matrices
$>$ Dirac operator

$$
D(p)=i \sum_{\mu=1}^{3} \gamma^{\mu}\left(\sum_{\nu=1}^{4}\left(\boldsymbol{e}^{\nu}\right)_{\mu} \sin p_{\nu}\right)+i \gamma^{4}\left(t-\sum_{\nu=1}^{4}\left(\boldsymbol{e}^{\nu}\right)_{4} \cos p_{\nu}\right)
$$

Minimal-doubling Condition: $\sum_{\nu}\left(e^{\nu}\right)_{\mu}=\left\{\begin{array}{cl}0 & \mu=1,2,3 \\ t / \tilde{C} & \mu=4\end{array}\right.$

$$
\Rightarrow \quad p= \pm(\tilde{p}, \tilde{p}, \tilde{p}, \tilde{p}), \quad \cos \tilde{p}=\tilde{C}
$$

A larger class of minimal-doubling fermions

- Expansion around zero points
ex.) Creutz action

$$
\begin{aligned}
D(p)= & C\left(q_{1}+q_{2}-q_{3}-q_{4}\right) i \gamma_{1} \\
& +C\left(q_{1}-q_{2}-q_{3}+q_{4}\right) i \gamma_{2} \\
& +C\left(q_{1}-q_{2}+q_{3}-q_{4}\right) i \gamma_{3} \\
& +B S\left(q_{1}+q_{2}+q_{3}+q_{4}\right) i \gamma_{4}+\mathcal{O}\left(q^{2}\right)
\end{aligned}
$$

Coefficients of gamma matrices stand for orthogonal coordinates of momentum. $\quad\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \delta^{\mu \nu}$
$>$ Momentum basis

$$
\begin{gathered}
\boldsymbol{b}^{1}=(C, C, C, B S), \quad \boldsymbol{b}^{2}=(C,-C,-C, B S), \\
\boldsymbol{b}^{3}=(-C,-C, C, B S), \quad b^{4}=(-C, C,-C, B S)
\end{gathered}
$$

$\boldsymbol{a}_{\mu} \cdot \boldsymbol{b}_{\nu}=\delta_{\mu \nu} \Rightarrow$ Spatial basis is found.

- Spatial basis (hopping vectors)

$$
\begin{gathered}
\boldsymbol{a}^{1}=\frac{1}{4 C}\left(1,1,1, \frac{C}{B S}\right), \quad \boldsymbol{a}^{2}=\frac{1}{4 C}\left(1,-1,-1, \frac{C}{B S}\right), \\
\boldsymbol{a}^{3}=\frac{1}{4 C}\left(-1,-1,1, \frac{C}{B S}\right), \quad \boldsymbol{a}^{4}=\frac{1}{4 C}\left(-1,1,-1, \frac{C}{B S}\right)
\end{gathered}
$$

These mean deformed-hypercubic (rhombus) lattices except for $C=B S$.
(a)

(b)

Kimura and Misumi (2009)

(b) is more natural since there is no hopping within one unit.

Creutz-type actions are defined on rhombus lattices.
(It is clear that hypercubic symmetry is broken.)

- Generalized Karsten-Wilczek action

$$
\begin{aligned}
S= & \frac{1}{2} \sum_{x} \sum_{\mu=1}^{4}\left[\bar{\psi}_{x} \gamma^{\mu} \psi_{x+\hat{\mu}}-\bar{\psi}_{x+\hat{\mu}} \gamma^{\mu} \psi_{x}\right]+S_{c} \\
S_{c}= & \frac{i}{2} r \sum_{x}\left[2\left(3+\frac{t) \bar{\psi}_{x} \gamma^{4} \psi_{x}}{/}-\sum_{\mu=1}^{4} \frac{\left(\bar{\psi}_{x} \gamma^{4} \psi_{x+\hat{\mu}}-\bar{\psi}_{x+\hat{\mu}} \gamma^{4} \psi_{x}\right)}{\downarrow}\right]\right. \\
& \text { A new parameter introduced }
\end{aligned}
$$

Sum over $\mu=1,2,3,4$

- Dirac operator:

$$
D(p)=i \sum_{\mu=1}^{4} \gamma^{\mu} \sin p_{\mu}+i r \gamma^{4}\left[\sum_{\mu=1}^{3}\left(1-\cos p_{\mu}\right)+\left(t-\cos p_{4}\right)\right]
$$

- Minimal-doubling condition:

$$
\left|\frac{r}{\sqrt{1+r^{2}}}\right| t<1, \quad\left|\frac{r}{\sqrt{1+r^{2}}}\right|(t+2)>1
$$

- Linearized Dirac operator with $p=q+p_{0}^{\prime}$:

$$
D(p)=i \sum_{\mu=1}^{3} \gamma^{\mu} q_{\mu}+i \sqrt{1+r^{2}\left(1-t^{2}\right)} \gamma^{4} q_{4}+\mathcal{O}\left(q^{2}\right)
$$

- Reciprocal/primitive vecs

$$
\left(\boldsymbol{b}^{\nu}\right)_{\mu}=\left\{\begin{array}{cl}
\frac{\delta_{\mu}^{\nu}}{\delta_{\mu}^{\nu} \sqrt{1+r^{2}\left(1-t^{2}\right)}}, \quad\left(a^{\nu}\right)_{\mu}=\left\{\begin{array}{cl}
\delta_{\mu}^{\nu} & (\mu=1,2,3) \\
\delta_{\mu}^{\nu} / \sqrt{1+r^{2}\left(1-t^{2}\right)} & (\mu=4)
\end{array} \text { (}{ }^{2}\right)
\end{array}\right.
$$

- Comparison with Wilson action

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} \bar{\psi}(-k)\left[i \frac{\gamma_{\mu}}{a} \sin \left(a k_{\mu}\right)+m+\frac{r}{a} \sum_{\mu}\left(1-\cos \left(a k_{\mu}\right)\right)\right] \psi(k
$$

Wilson term :

$$
r \sum_{\mu=1}^{4}\left(1-\cos p_{\mu}\right)
$$

$$
\text { K-M term : ir } \gamma^{4} \sum_{\mu=1}^{4}\left(1-\cos p_{\mu}\right) \quad \text { for } t=1
$$

You can obtain minimal-doubling actions just by multiplying Wilson term by one of gamma matrices !

Hypercubic and C, T are broken instead of chiral symmetry.

Appendix 4. Details of Higher dims

$\mathrm{D}=2 \mathrm{~m}$: you can generalize straightforward
$D=2 m+1$: extra hoppings are necessary

- Spinor vectors in higher dimensions

Isotropic vectors

$$
\begin{aligned}
& \mathrm{e}^{\mu} \cdot \mathrm{e}^{\nu}=\left\{\begin{array}{cl}
1 & \text { for } \quad \mu=\nu \\
\cos \theta_{d} & \text { for } \quad \mu \neq \nu \quad \cos \theta_{d}=-1 / d
\end{array}\right. \\
& \sum_{\mu=1}^{d+1} \mathrm{e}^{\mu}=0
\end{aligned}
$$

- Spinor vectors (d=2m)

$$
c_{\mu} \equiv \cos \theta_{\mu}=-1 / \mu, s_{\mu} \equiv \sin \theta_{\mu}=\sqrt{\mu^{2}-1} / \mu
$$

$$
\begin{aligned}
& \mathrm{e}^{1}=\left(c_{1} s_{2} \cdots s_{d-1} s_{d}, c_{2} s_{3} \cdots s_{d}, \cdots, c_{d-2} s_{d-1} s_{d}, c_{d-1} s_{d}, B c_{d}\right) \\
& \mathrm{e}^{2}=\left(\quad s_{2} \cdots s_{d-1} s_{d}, c_{2} s_{3} \cdots s_{d}, \cdots, c_{d-2} s_{d-1} s_{d}, c_{d-1} s_{d}, B c_{d}\right) \\
& \mathrm{e}^{3}=\left(\quad 0, \quad s_{3} \cdots s_{d}, \cdots, c_{d-2} s_{d-1} s_{d}, c_{d-1} s_{d}, B c_{d}\right) \\
& \vdots \\
& \left.\begin{array}{rlrr}
\mathrm{e}^{d-1} & =(& 0, & 0, \cdots, \\
\mathrm{e}^{d} & =(& s_{d-1} s_{d}, c_{d-1} s_{d}, B c_{d}
\end{array}\right)
\end{aligned}
$$

$>$ Clifford algebra in even dimensions

$$
\begin{aligned}
\Gamma_{\mu}^{(2 m)}=\tau_{1} \otimes \Gamma_{\mu}^{(2 m-2)}= & \left(\begin{array}{cc}
0 & \Gamma_{\mu}^{(2 m-2)} \\
\Gamma_{\mu}^{(2 m-2)} & 0
\end{array}\right) \text { for } \mu=1, \cdots, 2 m-1, \\
\Gamma_{2 m}^{(2 m)}=\tau_{2} \otimes \mathbb{1}_{\left[2^{m-1}\right]}= & \left(\begin{array}{cc}
0 & -i \mathbb{1}_{\left[2^{m-1}\right]} \\
i \mathbb{1}_{\left[2^{m-1}\right]} & 0
\end{array}\right), \quad \Gamma_{2 m+1}^{(2 m)}=\tau_{3} \otimes \mathbb{1}_{\left[2^{m-1}\right]}=\left(\begin{array}{cc}
\mathbb{1}_{\left[2^{m-1}\right]} & 0 \\
0 & -\mathbb{1}_{\left[2^{m-1}\right]}
\end{array}\right) \\
& \text { defined from (2m-2)D algebra }
\end{aligned}
$$

We define the following vectors.

$$
\begin{aligned}
& \Gamma^{(2 m)}=\left(\begin{array}{cc}
0 & \bar{\gamma}^{(2 m)} \\
\gamma^{(2 m)} & 0
\end{array}\right) \\
& \gamma^{(2 m)}=\left(\Gamma_{1}^{(2 m-2)}, \cdots, \Gamma_{2 m-1}^{(2 m-2)}, i \mathbb{1}_{\left[2^{m-1}\right]}\right), \quad \bar{\gamma}^{(2 m)}=\left(\Gamma_{1}^{(2 m-2)}, \cdots, \Gamma_{2 m-1}^{(2 m-2)},-i \mathbb{1}_{\left[2^{m-1}\right]}\right)
\end{aligned}
$$

- Creutz action ($d=2 m$)

$$
\begin{aligned}
S_{\mathrm{C}}=\frac{1}{2} \sum_{x}\left[\sum_{\mu=1}^{2 m}\right. & \left(\bar{\psi}_{x-\mathrm{a} \mu}^{A}\left(\Sigma^{(2 m)} \cdot \mathrm{e}^{\mu}\right) \psi_{x}^{B}-\bar{\psi}_{x+\mathrm{a}_{\mu}}^{B}\left(\Sigma^{(2 m)} \cdot \mathrm{e}^{\mu}\right) \psi_{x}^{A}\right. \\
& \left.-\bar{\psi}_{x+\mathrm{a}_{\mu}}^{A}\left(\bar{\Sigma}^{(2 m)} \cdot \mathrm{e}^{\mu}\right) \psi_{x}^{B}+\bar{\psi}_{x-\mathrm{a}_{\mu}}^{B}\left(\bar{\Sigma}^{(2 m)} \cdot \mathrm{e}^{\mu}\right) \psi_{x}^{A}\right) \\
& +\bar{\psi}_{x}^{A}\left(\Sigma^{(2 m)} \cdot \mathrm{e}^{2 m+1}\right) \psi_{x}^{B}-\bar{\psi}_{x}^{B}\left(\Sigma^{(2 m)} \cdot \mathrm{e}^{2 m+1}\right) \psi_{x}^{A} \\
& \left.-\bar{\psi}_{x}^{A}\left(\bar{\Sigma}^{(2 m)} \cdot \mathrm{e}^{2 m+1}\right) \psi_{x}^{B}+\bar{\psi}_{x}^{B}\left(\bar{\Sigma}^{(2 m)} \cdot \mathrm{e}^{2 m+1}\right) \psi_{x}^{A}\right]
\end{aligned}
$$

>Momentum basis vectors

$$
\left.\begin{array}{rl}
\mathrm{b}_{1} & =\left(C c_{1} s_{2} \cdots s_{d-1} s_{d}, C c_{2} s_{3} \cdots s_{d}, \cdots, C c_{d-2} s_{d-1} s_{d}, C c_{d-1} s_{d},-B S c_{d}\right) \\
\mathrm{b}_{2} & =\left(r C s_{2} \cdots s_{d-1} s_{d}, C c_{2} s_{3} \cdots s_{d}, \cdots, C c_{d-2} s_{d-1} s_{d}, C c_{d-1} s_{d},-B S c_{d}\right.
\end{array}\right)
$$

> Internal multiply

$$
\cos \eta=\frac{\mathrm{b}_{\mu} \cdot \mathrm{b}_{\nu}}{\left|\mathrm{b}_{\mu}\right|\left|\mathrm{b}_{\nu}\right|}=\frac{B^{2} S^{2} c_{d}^{2}+C^{2} s_{d}^{2} c_{d-1}}{B^{2} S^{2} c_{d}^{2}+C^{2} s_{d}^{2}}
$$

> Minimal-doubling condition
Exclude redundant zeros

$$
\begin{gathered}
p^{(\pm)}= \pm\left(\tilde{p}_{\mathrm{C}}, \cdots, \tilde{p}_{\mathrm{C}}\right) \bigcirc \quad p=\left(\tilde{p}_{\mathrm{C}}, \cdots, \tilde{p}_{\mathrm{C}}, \pi-\tilde{p}_{\mathrm{C}}\right) \times \\
\frac{m-1}{m}<C<1 \quad \rightarrow \quad m=2: \text { reduce to 4D case }
\end{gathered}
$$

Minimal-doubling region gets narrower with D

> Creutz condition

$$
\tilde{p}_{\mathrm{C}}=\frac{\pi}{d+1}, \quad C=\cos \left(\frac{\pi}{d+1}\right), \quad B=(d+1) \cot \left(\frac{\pi}{d+1}\right)
$$

>Borici condition

$$
C=\cos \tilde{p}_{\mathrm{C}}, \quad B=\sqrt{d+1} \cot \tilde{p}_{\mathrm{C}}
$$

- Odd dimensions

> Spinor structure on Hyperdiamond lattice

$$
\Gamma=\underbrace{\tau}_{\text {sublattice }} \otimes \underbrace{\gamma}_{\text {subspinor }}
$$

$A \rightarrow B, B \rightarrow A$ hoppings are enough for Even dimensions
$\mathrm{A} \rightarrow \mathrm{A}, \mathrm{B} \rightarrow \mathrm{B}$ hoppings are necessary for Odd dimensions

Because we need diagonal hoppings in any representation in odd dimensions.

- Clifford algebra in $d=2 m+1$ ($d=2 m$) spinor \rightarrow Parity rep.

$$
\begin{array}{ll}
\Gamma_{\mu}^{(2 m)}=\tau_{1} \otimes \Gamma_{\mu}^{(2 m-2)}=\left(\begin{array}{cc}
0 & \Gamma_{\mu}^{(2 m-2)} \\
\Gamma_{\mu}^{(2 m-2)} & 0
\end{array}\right) \text { for } \mu=1, \cdots, 2 m-1 \\
\Gamma_{2 m}^{(2 m)}=\tau_{2} \otimes \mathbb{1}=\left(\begin{array}{cc}
0 & -i \mathbb{1} \\
i \mathbb{1} & 0
\end{array}\right) & \\
\Gamma_{2 m+1}^{(2 m)}=\tau_{3} \otimes \mathbb{1}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right) & \gamma=\left(\Gamma_{1}^{(2 m-2)}, \cdots, \Gamma_{2 m-1}^{(2 m-2)}, i \mathbb{1}, 0\right), \quad \bar{\gamma}=\left(\Gamma_{1}^{(2 m-2)}, \cdots, \Gamma_{2 m-1}^{(2 m-2)},-i \mathbb{1}, 0\right)
\end{array}
$$

- Creutz action ($\mathrm{d}=2 \mathrm{~m}+1$)

Mass-like term Common hopping with even

- Momentum space

$$
\begin{aligned}
S & =\int d p \sum_{\mu=1}^{2 m+1}\left(i \sin p_{\mu} \bar{\psi}^{A}(-p)\left(\gamma \cdot e^{\mu}\right) \psi^{B}(p)+i \sin p_{\mu} \bar{\psi}^{B}(-p)\left(\bar{\gamma} \cdot e^{\mu}\right) \psi^{A}(p)\right) \\
& +\int d p\left[i\left(-t+\sum_{\mu=1}^{2 m+1} \cos p_{\mu}\right)\left(\bar{\psi}^{A}(-p) \psi^{A}(p)-\bar{\psi}^{B}(-p) \psi^{B}(p)\right)\right] \\
& =\int d p \bar{\Psi} \overline{(-p) D(p) \Psi(p)}
\end{aligned}
$$

- Dirac operator

$$
\begin{aligned}
& D(p)=i \sum_{\mu=1}^{2 m+1} x_{\mu}(p) \Gamma_{\mu}^{(2 m)} \\
& x_{\mu}(p)=\left(\prod_{\nu=\mu+1}^{2 m+1} s_{\nu}\right)\left(c_{\mu} \sum_{\nu=1}^{\mu} \sin p_{\nu}+\sin p_{\mu+1}\right) \text { for } \quad \mu=1, \cdots, 2 m \\
& x_{2 m+1}(p)=-t+\sum_{\mu=1}^{2 m+1} \cos p_{\mu}
\end{aligned}
$$

Minimal-doubling condition

$$
2 m-1<t<2 m+1 \quad p= \pm(\tilde{p}, \cdots, \tilde{p}) \quad \text { with } \quad \cos \tilde{p}=\frac{t}{2 m+1} \equiv \tilde{C}
$$

- Excitations

$$
\begin{aligned}
& x_{\mu}(p)=\tilde{C}\left(\prod_{\nu=\mu+1}^{2 m+1} s_{\nu}\right)\left(c_{\mu} \sum_{\nu=1}^{\mu} q_{\nu}+q_{\mu+1}\right)+\mathcal{O}\left(q^{2}\right) \text { for } \quad \mu=1, \cdots, 2 m \\
& x_{2 m+1}(p)=-\tilde{S} \sum_{\mu=1}^{2 m+1} q_{\mu}+\mathcal{O}\left(q^{2}\right)
\end{aligned}
$$

Choosing $t=2 m+1 \Rightarrow$ Two zeros reduce to one!
Excitation in $(2 m+1)$ th direction disappears: $x_{2 m+1}=0$

$$
D(p)=i \sum_{\mu=1}^{2 m} x_{\mu}(p) \Gamma_{\mu}^{(2 m)} \quad: \text { Mutilated pole }
$$

One massless fermion appears in terms of 4D.
Chiral symmetry is broken in $O\left(\mathrm{a}^{\wedge} 2\right)$.

5d minimal-doubling action \rightarrow 4d Wilson-like action

