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Motivation and history

◮ Lattice calculations of the hyperfine splitting in charmonium usually ignore the contri-
butions of the annihilation (disconnected) diagrams to both the vector J/Ψ and the
pseudoscalar ηc states.

◮ Our goal is to determine the actual value of the contributions.

◮ Perturbatively, the contribution of these diagrams in charmonium is expected to be
small due to the OZI suppression.

◮ Previous calculations (C. McNeile and C. Michael, Phys. Rev. D70 (2004) 034506,
P. de Forcrand et al., JHEP 0408 (2004) 004) using two-flavor gauge ensembles very
roughly estimate the contribution to be within ±20 MeV.

◮ Our previous work with clover charm quarks (Lattice 2007 and 2008) estimated the
contribution to be around −3 MeV.

◮ NEW: The charm quark mass is tuned using the rest mass of the ηc. Previously it was
done using the kinetic mass of Ds. The new tuning accounts better for the possible
mixing with glueballs.



Analytic framework

◮ The full meson propagator is:
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◮ Thus
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◮ Then the contribution we want to determine is:

δm = mc − mf ≈ λ(−m2
c)

2mc
.



Properties of the disconnected propagator

◮ In this study we work with the point-to-point disconnected propagator, which hugely
improves our statistics and signal.

◮ The asymptotic behavior at large times t of the full charmonium propagator, F (t), is

F (t) = C(t) + D(t) =
∑

n

〈0|O|n〉〈n|O|0〉e−Ent −−−−→
t → ∞ 〈0|O|0〉2e−E0t .

If O is Hermitian, then F (t) ≥ 0. This is also true for the point-to-point propagator
F (r).

◮ If D(r) dominates in F (r) at large r (which will happen if there are light glueballs and
light hadronic states coupling to the disconnected diagram) then D(r) ≥ 0 at large
r.

◮ Thus we can predict that if the operators are Hermitian, D(r) for the ηc will change
its sign form D(0) < 0 to D(r) > 0 at large r. Indeed we observed that (see lattice
2007 and 2008).



Fitting the disconnected propagator

◮ Choosing a fitting model:

⊲ The model should treat D(r) as a composite object, which has contributions not
only from the studied charmonium ground state, but also possible effects from
excited charmonium states, states lighter than the charmonium ground state and
possibly the UA(1) anomaly.

⊲ We also have to take into account that our data exhibits rotational symmetry
violations at short distances, due to the finite lattice spacing.

◮ A simplified form that describes D(r) in momentum space is:

D(p2) = λ(p2)
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◮ What is the form of λ(p2) ? How many excited states we should keep ?



Modeling the disconnected propagator

◮ In the fully quenched case we model λ(p2) as:

λ(p2) = U +
f

p2 + m2
g

,

where U stands for possible effects of the UA(1) anomaly, and the second term is a
light glueball term with mg – the glueball mass.

◮ In the dynamical 2+1 flavor case:

λ(p2) = U +
f
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l

+ · · · .

We keep only one light hadronic mode with an effective mass ml that (we hope)
describes well the long distance behavior of the point-to-point propagator.

◮ We want to limit the number of free parameters in our model to as few as possible.
Thus we determine all masses here from C(t), the long distance behavior of D(r) or
other literature, and keep them constant.



Fitting the disconnected propagator

◮ From fits to C(t) we determine with high accuracy mc, m⋆
c , At and A⋆

t . We obtain
A = 2mcAt and a1 = 2m⋆

cA
⋆
t . We use the central values of all of the above

parameters as constants in our model function.

◮ We fix mg using results from Y. Chen et al., Phys. Rev. D73:014516 (2006).

◮ In our model we replace we replace p2 with
∑

i 2(1− cos(pi)) and all the masses with
√

2(cosh(mc) − 1) to account for the discretization effects.

◮ In the quenched case, it is convenient to write:

Dfit(p
2) = UT1(p

2) + fT2(p
2).

We Fourier transform the functions T1,2(r) and tabulate them. Thus our disconnected
propagator is fitted to a linear model

Dfit(r) = UT1(r) + fT2(r).

We determine U and f and thus λ(−m2
c) and δm.

◮ In the dynamical case same is accomplished by fitting to:

Dfit(r) = UT1(r) + fT2(r) + lT3(r).



Tuning the charm quark mass

◮ Previously we used the Fermilab interpretation of clover fermions to tune the κc. We
used matching to the kinetic mass of Ds.

◮ But to position the ηc state correctly in the spectrum we now tune to its the rest
mass.

◮ Quenched fine ensemble a = 0.085 fm. ◮ Dynamical fine ensemble a = 0.085 fm.



Calculation details

◮ Ensembles:

ensemble a [fm] ml/ms volume κc # config.

quenched fine ≈ 0.085 · · · 283 × 96 0.120, 0.127 410
quenched s.fine ≈ 0.063 · · · 483 × 144 0.125, 0.130 415
2+1 flavors, fine ≈ 0.086 0.0031/0.031 403 × 96 0.125, 0.127 766

Boldface κc - current work.

◮ To calculate the disconnected diagrams we employ:

⊲ Point-to-point propagators.

⊲ 72 Z2 spin-color-diluted random sources (72 × 12 matrix inversions per lattice.

⊲ Unbiased subtraction technique in the stochastic estimators (up to third order in
κc).



Results: Quenched fine ensemble

◮ Fit model:
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◮ There is strong model dependence (number of excited states and amplitude values):
δm ∈ [−7,−1.6] MeV.



Results:Quenched superfine ensemble

◮ Fit model:
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◮ There is strong model dependence: δm ∈ [−10,−1.6] MeV.



Results:Quenched dynamical ensemble

◮ Fit model:
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◮ There is strong model dependence: δm ∈ [−20,−6] MeV.



Conclusions

◮ We retuned kc to better take into account the mixing with glueballs.

◮ We gained deeper understanding of the importance of excited states and model as-
sumptions for the final result.

◮ Future: Improve the fitting model using more sophisticated studies of the excited
states of charmonium.


