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Introduction

Minimally doubled fermions (2 flavors):
realize the minimal doubling allowed by the Nielsen-Ninomiya theorem

Preserve an exact chiral symmetry for a degenerate doublet of quarks

chiral symmetry protects mass renormalization

Remain at the same time also strictly local

fast for simulations

A cost-effective realization of chiral symmetry at nonzero lattice

spacing

Mixings of a new kind arise, as a consequence of the breaking of the

hypercubic symmetry → preferred direction in euclidean spacetime

One of the main aims of our work is the investigation of the mixing patterns
that appear in radiative corrections

Also an example of the usefulness of perturbation theory in helping to
unfold theoretical aspects of (new) lattice formulations
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Introduction

We can construct a conserved axial current, which has a simple expression,
involving only nearest-neighbors sites

One of the very few lattice discretizations in which one can give a simple
expression (and ultralocal) for a conserved axial current

Compared with staggered fermions:

same kind of U(1) ⊗ U(1) chiral symmetry

ideal for Nf = 2 simulations: 2 flavors instead of 4
⇒ no uncontrolled extrapolation to 2 physical light flavors

no complicated intertwining of spin and flavor

Much cheaper and simpler than Ginsparg-Wilson fermions

Minimally doubled fermions: ‘new’ . . . but also ‘old’

Revival in the last 2 years – initiated by studies on graphenes by Creutz , in
December 2007

Here we consider two realizations of minimally doubled fermions:
Boriçi-Creutz and Karsten-Wilczek fermions
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Boriçi-Creutz fermions

Boriçi and Creutz: fermionic action with the free Dirac operator (in momentum
space)

D(p) = i
∑

µ

(γµ sin pµ + γ′
µ cos pµ) − 2iΓ +m0

where
Γ =

1

2
(γ1 + γ2 + γ3 + γ4) (Γ2 = 1)

and
γ′

µ = ΓγµΓ = Γ − γµ

Useful relations:
∑

µ

γµ =
∑

µ

γ′
µ = 2Γ, {Γ, γµ} = 1, {Γ, γ′

µ} = 1

The action vanishes at p1 = (0, 0, 0, 0) and p2 = (π/2, π/2, π/2, π/2)

A linear combination of two (physically equivalent) naive fermions ,
corresponding to the first two terms in the action

Γ = 1
2

(γ1 + γ2 + γ3 + γ4) selects a special direction → hypercubic breaking
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Karsten-Wilczek fermions

Already in the Eighties: Karsten (1981) and then Wilczek (1987) proposed
some particular kind of minimally doubled fermions

Unitary equivalent to each other, after phase redefinitions

Wilczek [ PRL 59, 2397 (1987) ] proposed a special choice of the function
Pµ(p) which minimizes the numbers of doublers

The free Karsten-Wilczek Dirac operator

D(p) = i

4∑

µ=1

γµ sin pµ + iγ4

3∑

k=1

(1 − cos pk)

has zeros at p1 = (0, 0, 0, 0) and p2 = (0, 0, 0, π)

Drawback: it destroys the equivalence of the four directions under discrete
permutations

→ breaking of the hypercubic symmetry
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Hypercubic breaking

The actions of minimally doubled fermions have two zeros

⇒ there is always a special direction in euclidean space
(given by the line that connects these two zeros)

Thus, these actions cannot maintain a full hypercubic symmetry

They are symmetric only under the subgroup of the hypercubic group which
preserves (up to a sign) a fixed direction

For the Boriçi-Creutz action this is a major hypercube diagonal, while for other
minimally doubled actions it may not be a diagonal – for example for the
Karsten-Wilczek action is the x4 axis

Although the distance between the 2 Fermi points is the same (p2
2 − p2

1 = π2),
these two realization of minimally doubled fermions are not equivalent

The breaking of the hypercubic symmetry implies the appearance of mixings
with operators of different dimensionality, like ψΓψ or ψΓD2ψ

For minimally doubled fermions a mixing with dimension-3 operators cannot be
avoided ( Bedaque, Buchoff, Tiburzi and Walker-Loud )

Lat2010 – 14.6.2010 – p.6



Propagators, vertices, . . .

Quark propagator for Boriçi-Creutz fermions:

S(p) = a
−i
∑

µ

[
γµ sin apµ − 2 γ′

µ sin2 apµ/2
]
+ am0

4
∑

µ

[
sin2 apµ/2 + sin apµ

(
sin2 apµ/2 − 1

2

∑
ν

sin2 apν/2
)]

+ (am0)2

The second pole at ap = (π/2, π/2, π/2, π/2) describes (as expected) a
particle of opposite chirality to the one at ap = (0, 0, 0, 0)

Quark propagator for Karsten-Wilczek fermions (2nd pole at ap = (0, 0, 0, π)) :

S(p) = a

−i

4∑

µ=1

γµ sin apµ − 2i γ4

3∑

k=1

sin2 apk

2
+ am0

4∑

µ=1

sin2 apµ + 4 sin ap4

3∑

k=1

sin2 apk

2
+ 4

(
3∑

k=1

sin2 apk

2

)2

+ (am0)
2

Quark-quark-gluon and quark-quark-gluon-gluon vertices (Boriçi-Creutz):

V1(p1, p2) = −ig0

(
γµ cos

a(p1 + p2)µ

2
− γ′

µ sin
a(p1 + p2)µ

2

)

V2(p1, p2) =
1

2
iag2

0

(
γµ sin

a(p1 + p2)µ

2
+ γ′

µ cos
a(p1 + p2)µ

2

)
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Counterterms

Each of these two bare actions does not contain all possible operators allowed
by the respective symmetries (broken hypercubic group)

Radiative corrections generate new contributions whose form is not matched
by any term in the original bare actions

Counterterms are then necessary for a consistent renormalized theory

This consistency requirement will uniquely determine their coefficients

Our task: add to the bare actions all possible counterterms allowed by the
remaining symmetries (after hypercubic symmetry has been broken)

They are lattice artefacts peculiar to minimally doubled fermions

In the following we will consider the massless case m0 = 0

Chiral symmetry strongly restricts the number of possible counterterms

For Boriçi-Creutz fermions, operators are allowed where summations over just
single indices are present (in addition to the standard Einstein summation
over two indices)

Then objects like
∑

µ
γµ = Γ appear

Lat2010 – 14.6.2010 – p.8



Counterterms

We find that there can be only one dimension-4 counterterm: ψ Γ
∑

µ
Dµψ

Possible discretization: form similar to the hopping term in the action

c4(g
2
0)

1

2a

∑

µ

(
ψ(x) ΓUµ(x)ψ(x+ aµ̂) − ψ(x+ aµ̂) ΓU†

µ(x)ψ(x)
)

There is also one counterterm of dimension three:
ic3(g

2
0)

a
ψ(x) Γψ(x)

This is already present in the bare action, but with a fixed coefficient , −2/a

The appearance of this counterterm means that in the general renormalized
action the coefficient of this operator must be kept general

For Karsten-Wilczek fermions we find an analogous situation

Here objects are allowed in which we constrain any index to be equal to 4

Only gauge-invariant counterterm of dimension four: ψ γ4D4 ψ

A suitable discretization:

d4(g
2
0)

1

2a

(
ψ(x) γ4 U4(x)ψ(x+ a4̂) − ψ(x+ a4̂) γ4 U

†
4 (x)ψ(x)

)
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Counterterms

There is also one counterterm of dimension three,
id3(g

2
0)

a
ψ(x) γ4 ψ(x)

(already present in the bare Karsten-Wilczek action, with a fixed coefficient)

In perturbation theory the coefficients of all these counterterms are functions
of the coupling which start at order g2

0

They give rise at one loop to additional contributions to fermion lines

The rules for the corrections to fermion propagators, needed for our one-loop
calculations, can be easily derived

For external lines, they are given in momentum space respectively by

−ic4(g
2
0) Γ

∑

ν

pν , −
ic3(g

2
0)

a
Γ

for Boriçi-Creutz fermions, and by

−id4(g
2
0) γ4 p4, −

id3(g
2
0)

a
γ4

for Karsten-Wilczek fermions
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Counterterms

We will determine all these coefficients (at one loop) by requiring that the
renormalized self-energy assumes its standard form

Counterterm interaction vertices are generated as well

These vertex insertions are at least of order g3
0 , and thus they cannot

contribute to the one-loop amplitudes that we study here
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Counterterms

We will determine all these coefficients (at one loop) by requiring that the
renormalized self-energy assumes its standard form

Counterterm interaction vertices are generated as well

These vertex insertions are at least of order g3
0 , and thus they cannot

contribute to the one-loop amplitudes that we study here

The form of the counterterms remains the same at all orders of perturbation
theory

Only the values of their coefficients change according to the loop order

The same counterterms appear at the nonperturbative level, and will be
required for a consistent numerical simulation of these fermions

We also want to emphasize that counterterms not only provide additional
Feynman rules for the calculation of loop amplitudes

They can modify Ward identities and hence, in particular, contribute additional
terms to the conserved currents
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Self-energy

The quark self-energy (without counterterms) of a Boriçi-Creutz fermion is
given at one loop by

Σ(p,m0) = i6pΣ1(p) +m0 Σ2(p) + c1(g
2
0) · iΓ

∑

µ

pµ + c2(g
2
0) · i

Γ

a

with

Σ1(p) = 1+
g2
0

16π2
CF

[
log a2p2+6.80663+(1−α)

(
−log a2p2+4.792010

)]
+O(g4

0)

Σ2(p) = 1+
g2
0

16π2
CF

[
4 log a2p2−29.48729+(1−α)

(
−log a2p2+5.792010

)]
+O(g4

0)

c1(g
2
0) = 1.52766 ·

g2
0

16π2
CF +O(g4

0)

c2(g
2
0) = 29.54170 ·

g2
0

16π2
CF +O(g4

0)

The full inverse propagator at one loop can be written (without counterterms)
as

Σ−1(p,m0) =
(
1−Σ1

)
·
{
i6p+m0

(
1−Σ2 +Σ1

)
−
ic1
2

∑

µ

γµ

∑

ν

pν −
ic2
a

Γ
}
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Self-energy

We can only cast the renormalized propagator in the standard form

Σ(p,m0) =
Z2

i6p + Zm m0

with the wave-function and quark mass renormalization given by

Z2 =
(
1 − Σ1

)−1

, Zm = 1 −
(
Σ2 − Σ1

)

if we use counterterms to cancel the Lorentz non-invariant factors (c1 and c2)

The term proportional to c1(g
2
0) can be eliminated by using the counterterm of

the form
ψ
∑

µ

γµ

∑

ν

Dν ψ

The term proportional to c2(g
2
0) can be eliminated by the counterterm

1

a
ψ Γψ

For Boriçi-Creutz fermions we then determine at one loop

c3(g
2
0) = 29.54170 ·

g2
0

16π2
CF +O(g4

0)

c4(g
2
0) = 1.52766 ·

g2
0

16π2
CF +O(g4

0)
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Self-energy

Full inverse propagator (without counterterms) for Karsten-Wilczek fermions:

Σ−1(p,m0) =
(
1 − Σ1

)
·
(
i6p +m0

(
1 − Σ2 + Σ1

)
− id1 γ4p4 −

id2

a
γ4

)

with

Σ1(p) =
g2
0

16π2
CF

[
log a2p2 + 9.24089 + (1 − α)

(
− log a2p2 + 4.792010

)]

Σ2(p) =
g2
0

16π2
CF

[
4 log a2p2 − 24.36875 + (1 − α)

(
− log a2p2 + 5.792010

)]

d1(g
2
0) = −0.12554·

g2
0

16π2
CF +O(g4

0), d2(g
2
0) = −29.53230·

g2
0

16π2
CF +O(g4

0)

Similarly to before, by adding to the Karsten-Wilczek action counterterms of
the form

ψ γ4D4 ψ,
1

a
ψ γ4 ψ

the renormalized propagator can be written in the standard form

Then, at one loop

d3(g
2
0) = −29.53230·

g2
0

16π2
CF +O(g4

0), d4(g
2
0) = −0.12554·

g2
0

16π2
CF +O(g4

0)
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Local bilinears

No new mixings for the scalar (pseudoscalar) density and the tensor current

The vertex diagram of the vector current for Boriçi-Creutz fermions gives

g2
0

16π2
CF γµ

[
− log a2p2 + 9.54612+ (1−α)

(
log a2p2 − 4.792010

)]
+ cv

1(g2
0) Γ

with the coefficient of the mixing given by

cv
1(g2

0) = −0.10037 ·
g2
0

16π2
CF +O(g4

0)

(axial current: the numbers are the same)

Vector current of Karsten-Wilczek fermions:

g2
0

16π2
CF γµ

[
−log a2p2+10.44610−δµ4·2.88914+(1−α)

(
log a2p2−4.792010

)]

The spatial and temporal components of the vector (as well the axial) current
receive different radiative corrections!

Cross-mixings between the spatial and temporal components appear to be
absent – each of these components still renormalizes multiplicatively
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Conserved vector and axial currents

ZV and ZA (of the local currents) are not equal to one

The local vector and axial currents are not conserved

We need to consider the chiral Ward identities in order to work with currents
which are protected from renormalization

We have constructed the conserved vector and axial currents, and verified that
at one loop their renormalization constants are equal to one

We act on the Boriçi-Creutz action in position space

S = a4
∑

x

[
1

2a

∑

µ

[
ψ(x) (γµ + iγ′

µ)Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ − iγ′
µ)U†

µ(x)ψ(x)
]

+ ψ(x)
(
m0 −

2iΓ

a

)
ψ(x)

]

with the vector transformation

δV ψ = iαψ, δV ψ = −iαψ

or the axial transformation

δAψ = iα γ5ψ, δAψ = iαψγ5 Lat2010 – 14.6.2010 – p.16



Conserved vector and axial currents

We then obtain the conserved vector corrent for Boriçi-Creutz fermions as

V cons
µ (x) =

1

2

[
ψ(x) (γµ+i γ′

µ)Uµ(x)ψ(x+aµ̂)+ψ(x+aµ̂) (γµ−i γ
′
µ)U†

µ(x)ψ(x)

]

while the axial current (conserved in the case m0 = 0) is

Acons
µ (x) =

1

2

[
ψ(x) (γµ+i γ′

µ) γ5 Uµ(x)ψ(x+aµ̂)+ψ(x+aµ̂) (γµ−i γ
′
µ) γ5 U

†
µ(x)ψ(x)

]

We have computed the renormalization of these point-split currents

The sum of vertex, sails and operator tadpole gives (in the vector case)

g2
0

16π2
CF γµ

[
− log a2p2 − 6.80664+ (1−α)

(
log a2p2 − 4.79202

)]
+ ccv

1 (g2
0) Γ

where the coefficient of the mixing is ccv
1 (g2

0) = −1.52766 ·
g2

0

16π2 CF +O(g4
0)

The term proportional to γµ exactly compensates the contribution of Σ1(p)

from the quark self-energy (wave-function renormalization)

But what about the mixing term, proportional to Γ ?

We should take into account the counterterms . . . Lat2010 – 14.6.2010 – p.17



Conserved vector and axial currents

The counterterm ψ(x)
iΓ

a
ψ(x) does not modify the Ward identities

On the contrary, the counterterm

c4(g
2
0)

4

∑

µ

∑

ν

(
ψ(x) γν Uµ(x)ψ(x+ aµ̂) + ψ(x+ aµ̂) γν U

†
µ(x)ψ(x)

)

generates new terms in the Ward identities and then in the conserved currents

The additional term in the conserved vector current so generated reads

c4(g
2
0)

4

[
ψ(x)

(∑

ν

γν

)
Uµ(x)ψ(x+ aµ̂) + ψ(x+ aµ̂)

(∑

ν

γν

)
U†

µ(x)ψ(x)
]

It is easy to compute its 1-loop contribution (coefficient already of order g2
0 !)

The result is then c4(g
2
0) Γ = −ccv

1 (g2
0) Γ

This exactly cancels the Γ mixing term arising for the 1-loop conserved
current without counterterms

Thus, we obtain that the renormalization constant of these point-split currents
is one – which confirms that they are conserved currents
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Conserved vector and axial currents

Let us now consider the Karsten-Wilczek action in position space:

S = a4
∑

x

[
1

2a

4∑

µ=1

[
ψ(x) (γµ − iγ4 (1 − δµ4))Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ + iγ4 (1 − δµ4))U
†
µ(x)ψ(x)

]
+ ψ(x)

(
m0 +

3iγ4

a

)
ψ(x)

]
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Conserved vector and axial currents

Let us now consider the Karsten-Wilczek action in position space:

S = a4
∑

x

[
1

2a

4∑

µ=1

[
ψ(x) (γµ − iγ4 (1 − δµ4))Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ + iγ4 (1 − δµ4))U
†
µ(x)ψ(x)

]
+ ψ(x)

(
m0 +

3iγ4

a

)
ψ(x)

]

For Karsten-Wilczek fermions, application of the chiral Ward identities gives for
the conserved axial current

Ac
µ(x) =

1

2

(
ψ(x) (γµ − iγ4 (1 − δµ4)) γ5 Uµ(x)ψ(x+ aµ̂)

+ψ(x+ aµ̂) (γµ + iγ4 (1 − δµ4)) γ5 U
†
µ(x)ψ(x)

)

+
d4(g

2
0)

2

(
ψ(x) γ4γ5 U4(x)ψ(x+ a4̂) + ψ(x+ a4̂) γ4γ5 U

†
4 (x)ψ(x)

)

Once more, is a simple expression which involve only nearest-neighbour sites

We checked explicitly that its renormalization constant is one
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Vacuum polarization

For Boriçi-Creutz fermions (without gluonic counterterm): (Tr (tatb) = C2 δ
ab)

Π(f)
µν (p) =

(
pµpν − δµνp

2

)[
g2
0

16π2
C2

(
−

8

3
log p2a2 + 23.6793

)]

−

(
(pµ + pν)

∑

λ

pλ − p2 − δµν

(∑

λ

pλ

)2

)
g2
0

16π2
C2 · 0.9094

For Karsten-Wilczek fermions (without gluonic counterterm):

Π(f)
µν (p) =

(
pµpν − δµνp

2

)[
g2
0

16π2
C2

(
−

8

3
log p2a2 + 19.99468

)]

−

(
pµpν (δµ4 + δν4) − δµν

(
p2 δµ4δν4 + p2

4

)
)

g2
0

16π2
C2 · 12.69766

There are new terms, compared with a standard situation like Wilson fermions

Although each of these actions breaks hypercubic symmetry in its appropriate

and peculiar way, these new terms still satisfy the Ward identity pµΠ
(f)
µν (p) = 0

Very important: there are no power-divergences (1/a2 or 1/a) in our results for
the vacuum polarization!
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Counterterms

We need counterterms also for the pure gauge part of the actions of
minimally doubled fermions

Although at the bare level the breaking of hypercubic symmetry is a feature of
the fermionic actions only, in the renormalized theory it propagates (via the
interactions between quarks and gluons) also to the pure gauge sector

These counterterms must be of the trFF form, but with nonconventional
choices of the indices, reflecting the breaking of the hypercubic symmetry

Only purely gluonic counterterm possible for the Boriçi-Creutz action:

cP (g2
0)
∑

λρτ

trFλρ(x)Fρτ (x)

At one loop this counterterm is relevant only for gluon propagators

Denoting the fixed external indices at both ends with µ and ν, all possible
lattice discretizations of this counterterm give in momentum space the same
Feynman rule:

−cP (g2
0)

[
(pµ + pν)

∑

λ

pλ − p2 − δµν

(∑

λ

pλ

)2

]

The presence of this counterterm is essential for the correct renormalization of
the vacuum polarization Lat2010 – 14.6.2010 – p.21



Counterterms

It is not hard to imagine that in the case of Karsten-Wilczek fermions the
temporal plaquettes will be renormalized differently from the other plaquettes

Indeed, the counterterm to be introduced contains an asymmetry between
these two kinds of plaquettes, and can be written in continuum form as

dP (g2
0)
∑

ρλ

trFρλ(x)Fρλ(x) δρ4

This is the only purely gluonic counterterm needed for this action, since
introducing also a δλ4 in the above expression will produce a vanishing object

It is immediate to write a lattice discretization for it, using the plaquette:

dP (g2
0)

β

2

∑

ρλ

(
1 −

1

NC

trP4λ(x)
)

The Feynman rule for this counterterm reads

−dP (g2
0)
[
pµpν (δµ4 + δν4) − δµν

(
p2 δµ4δν4 + p2

4

)]

and again is needed in the vacuum polarization
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Counterterms

The cancellation of the hypercubic breaking terms of the vacuum polarization
determines

cP (g2
0) = −0.9094 ·

g2
0

16π2
C2 +O(g4

0)

dP (g2
0) = −12.69766 ·

g2
0

16π2
C2 +O(g4

0)
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Counterterms

The cancellation of the hypercubic breaking terms of the vacuum polarization
determines

cP (g2
0) = −0.9094 ·

g2
0

16π2
C2 +O(g4

0)

dP (g2
0) = −12.69766 ·

g2
0

16π2
C2 +O(g4

0)

All counterterms remain of the same form at all orders of perturbation theory

Only the values of their coefficients depend on the number of loops

The same counterterms appear at the nonperturbative level, and will be
required for a consistent simulation of these fermions

We would now like to see how the one-loop calculations presented so far can
shed light on numerical simulations of minimally doubled fermions

These simulations will have to employ the complete renormalized actions (in
position space), including the counterterms

We can write the renormalized actions as follows:
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On the simulations

For Boriçi-Creutz fermions

Sf
BC = a4

∑

x

{
1

2a

4∑

µ=1

[
ψ(x) (γµ + c4(β) Γ + iγ′

µ)Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ − c4(β) Γ − iγ′
µ)U†

µ(x)ψ(x)
]

+ψ(x)
(
m0 + c̃3(β)

iΓ

a

)
ψ(x)

+β
∑

µ<ν

(
1 −

1

Nc

Re trPµν

)
+ cP (β)

∑

µνρ

trF lat
µρ (x)F lat

ρν (x)

}

We have redefined the coefficient of the dimension-3 counterterm, using
c̃3(β) = −2 + c3(β) (which does not vanish at tree level)

F lat is some lattice discretization of the field-strength tensor
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On the simulations

The renormalized action for Karsten-Wilczek fermions reads

Sf
KW = a4

∑

x

{
1

2a

4∑

µ=1

[
ψ(x) (γµ(1 + c4(β) δµ4) − iγ4 (1 − δµ4))Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ(1 − d4(β) δµ4) + iγ4 (1 − δµ4))U
†
µ(x)ψ(x)

]

+ψ(x)
(
m0 + d̃3(β)

i γ4

a

)
ψ(x)

+β
∑

µ<ν

(
1 −

1

Nc

Re trPµν

)(
1 + dP (β) δµ4

)}

where d̃3(β) = 3 + d3(β) has a non-zero value at tree level

In perturbation theory the coefficients of the counterterms have the expansions

c̃3(g
2
0) = −2 + c

(1)
3 g2

0 + c
(2)
3 g4

0 + . . . ; d̃3(g
2
0) = 3 + d

(1)
3 g2

0 + d
(2)
3 g4

0 + . . .

c4(g
2
0) = c

(1)
4 g2

0 + c
(2)
4 g4

0 + . . . ; d4(g
2
0) = d

(1)
4 g2

0 + d
(2)
4 g4

0 + . . .

cP (g2
0) = c

(1)
P g2

0 + c
(2)
P g4

0 + . . . ; dP (g2
0) = d

(1)
P g2

0 + d
(2)
P g4

0 + . . .
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On the simulations

In perturbation theory the four-dimensional counterterm to the fermionic action
is necessary for the proper construction of the conserved currents

Its coefficient, as determined from the one-loop self-energy, has exactly the
right value for which the conserved currents remain unrenormalized

One possible nonperturbative determination of c4 (and d4): require that the
electric charge is one , using the (unrenormalized) conserved currents

Another effect of radiative corrections is to move the poles of the quark
propagator away from their tree-level positions

It is the task of the dimension-3 counterterm, for the appropriate value of the
coefficient c3 (or d3), to bring the two poles back to their original locations

These shifts can introduce oscillations in some hadronic correlation functions
(similarly to staggered fermions)

One possible way to determine the coefficients of the dimension-3
counterterms would then be to tune them in appropriate correlation functions
until these oscillations are removed

Important: no sign problem for the Monte Carlo generation of configurations
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On the simulations

The purely gluonic counterterm for Boriçi-Creutz fermions introduces in the
renormalized action operators of the kind E ·B, E1E2, B2B3 , . . . – instead, in
a Lorentz invariant theory only E2 and B2 are allowed

Fixing the coefficient cP could then be done by measuring 〈E ·B〉, 〈E1E2〉, · · ·,
and tuning cP in such a way that one (or more) of these expectation values is
restored to its proper value pertinent to a Lorentz invariant theory, i.e. zero

These effects could turn out to be rather small , given that in the tree-level
action only the fermionic part breaks the hypercubic symmetry

For Karsten-Wilczek fermions the purely gluonic counterterm introduces an
asymmetry between the plaquettes with a temporal index and the other ones

One can then fix dP by computing a spatial plaquette or Wilson loop, and then
equating its result to its counterpart with components in the time direction

Only simulations will reveal the actual amount of symmetry breaking

Furthermore, the magnitude of these symmetry-breaking effects could turn out
to be quite different for Boriçi-Creutz compared to Karsten-Wilczek fermions

Thus, one of these two actions could in this way be raised to become the
preferred one for numerical simulations Lat2010 – 14.6.2010 – p.27



On the improvement

Df

Wilson =
1

2

{
4∑

µ=1

γµ(∇µ + ∇∗
µ) − ar

4∑

µ=1

∇∗
µ∇µ

}

Df
BC =

1

2

{
4∑

µ=1

γµ(∇µ + ∇∗
µ) + ia

4∑

µ=1

γ′
µ ∇∗

µ∇µ

}

Df
KW =

1

2

{
4∑

µ=1

γµ(∇µ + ∇∗
µ) − iaγ4

3∑

k=1

∇∗
k∇k

}

where ∇µψ(x) = 1
a

[Uµ(x)ψ (x+ aµ̂) − ψ(x)] is the nearest-neighbor forward
covariant derivative, and ∇∗

µ the corresponding backward one

All these three formulations contain a dimension-5 operator in the bare action
→ we expect leading lattice artefacts to be of order a

Additional dimension-5 operators occur not only in the quark sector (e.g.,
ψ Γ
∑

µν
DµDνψ ), but also in the pure gauge part (e.g.,

∑
µνλ

FµνDλFµν )

When Lorentz invariance is broken, the statement that only operators with
even dimension can appear in the pure gauge action is no longer true
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Conclusions

Boriçi-Creutz and Karsten-Wilczek fermions are described at one loop
by a fully consistent quantum field theory

Three counterterms need to be added to the bare actions

All their coefficients can be calculated in perturbation theory – or
nonperturbatively from Monte Carlo simulations

After these subtractions are consistently taken into account, the power
divergence in the self-energy is eliminated

No other power divergences occur for all quantities that we calculated

Scalar, pseudoscalar and tensor operators show no new mixings at all

Local vector and axial currents mix with new operators which are not
invariant under the hypercubic group

The vacuum polarization does not present new divergences

Leading lattice artefacts seem to be of order a

Conserved vector and axial currents can be defined, and they involve
only nearest-neighbors sites

they do not have mixings, and their renormalization constant is one
one of the very few cases where one can define a simple
conserved axial current (also ultralocal)
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