Summary

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Scalar does not decay at finite temperatures

Lattice 2010, Villasimius

Debasish Banerjee, Rajiv Gavai, Sourendu Gupta

Tata Institute of Fundamental Research, Mumbai, India

June 18, 2010

Thanks to S. Datta, N. Mathur and J. Maiti for useful discussions

Summary

Motivation

- Nature and composition of quasiparticles in QGP plasma : subject of intense investigation for the past two decades [MILC collaboration, RBC-Bielefeld, ILGTI (Gavai-Gupta)]
- Above ~ 2 3T_c, weak coupling resummation schemes are known to agree with lattice results on Equation of state and susceptiblities. [Laine et al.]
- Around ~ T_c, only lattice methods reliable in making quantitative statements
- Distinguishing the hadronic phase from the plasma phase? Important for experiments! Screening masses offer useful ideas.
- Also important for estimating finite volume corrections for thermodynamics
- Chiral symmetry restoration in the medium

Configuration details

- Configurations used for analysis are reported in Gavai, Gupta PRD 78, 114503 (2008)
- Main features for recap:
 - R-algorithm for hybrid molecular dynamics used : naive staggered fermions + Wilson gauge action
 - Scan in temperature from $0.89T_c$ to $1.92T_c$ on $N_{\tau} = 6$ lattices, keeping $m_{\pi} \simeq 230$ MeV
 - For screening mass study, N_s = 24
 - For finite volume study, $N_s = 8, 12, 18, 24, 30$
- Tolerance of the CG algorithm $\epsilon = 10^{-5}$ for calculating the quark propagator More details
- Point-point correlation function for local meson operators in the pseudo-scalar(PS), scalar(S), vector(V), axial-vector(AV) channels analyzed

Summary

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Analysis Details

Covariance matrix $C_{zz'}$ was used to fit the correlation functions C(z)

$$C(z) = A_1(e^{-m_1 z} + e^{-m_1(N_z - z)}) + (-1)^z A_2(e^{-m_2 z} + e^{-m_2(N_z - z)})$$

 m_1, m_2 : screening masses of the lightest meson and its parity partner A_1, A_2 : the corresponding amplitudes

Goldstone pion is the non-oscillating pion with positive A_1 Convention same as in Mukherjee, PoS LAT2007:210

by minimizing the χ^2 :

$$\chi^{2} = \sum_{zz'} \frac{C(z) - \langle C(z) \rangle}{\sigma(z)} C_{zz'}^{-1} \frac{C(z') - \langle C(z') \rangle}{\sigma(z')}$$

Fit details-1

- Inversions done with Mathematica routines
- Inversions much more accurate than statistical errors
- Pion correlators equally good at all temperatures; characterized by single mass fits very well
- Other correlators noisy at small T and large z

Fit details-1

- Inversions done with Mathematica routines
- Inversions much more accurate than statistical errors
- Pion correlators equally good at all temperatures; characterized by single mass fits very well
- Other correlators noisy at small T and large z

ъ

Fit details-2

Large contribution from the parity partner for the vector.

- Results indicate considerable correlation entering through Czz
- Noisy points excluded as much as possible
- Stability of fit checked by varying the fit range
- Most of the fits have $\chi^2/dof \sim 1$

Summary

Local Masses

Due to oscillations, local masses using 2-z slices Gavai, Gupta, Majumdar(2002)

$$\frac{C(z+1)}{C(z-1)} = \frac{\cosh[-m(z)(z+1-N_z/2)]}{\cosh[-m(z)(z-1-N_z/2)]}$$

Agree with the fitted values

Summary

Local Masses

Due to oscillations, local masses using 2-z slices Gavai, Gupta, Majumdar(2002)

$$\frac{C(z+1)}{C(z-1)} = \frac{\cosh[-m(z)(z+1-N_z/2)]}{\cosh[-m(z)(z-1-N_z/2)]}$$

Agree with the fitted values

Results - Screening Masses

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Screening Masses – observations

- PS and S non-degenerate at T ~ T_c
- Chiral symmetry seems restored slowly. Fully restored at about $T \sim 1.33 T_c$
- V and AV degenerate even at T ~ T_c; and nearly equal to the free theory value
- PS and S differ considerably ~ 15 20% from the free theory values even at highest temperatures T ~ 2T_c
- Similar trends with results of RBC-Bielefeld collaboration for 2+1 flavour QCD with p4fat3 fermion action: Agreement for spin-1 mesons ~ 5% and spin-0 meson ~ 10% • more figs
- Larger difference with the free theory for spin-0 mesons also seen in a quenched calculation with overlap quarks Gavai, Gupta, Lacaze (2007) • more figs

▲□▶▲□▶▲□▶▲□▶ = のへで

Finite Volume Results

- $N_{\tau} = 6; N_s = 8, 12, 18, 24, 30$
- No volume dependence at $T = 0.94 T_c!$
- Same as critical end-point temperature (but $\mu = 0$) Gavai, Gupta (2008)
- Interesting region for experiments!

No decay for scalars!

Correlation function of the scalar does not show any distinct volume dependence at $0.94T_c$

No decay for scalars!

- Measured and fitted normalization also support our conclusion
- Possible reason for stability is that at finite temperatures, due to excess
 of pions in the heat bath their recombination is also possible
- Interesting to check at what temperature the threshold is reached
- A possible experimental signature!

Interaction strength

Seems to be a change in the nature of the interactions with the rise in temperature

• First defn (left fig):

 $r = \frac{C_{PS}(0)m_{PS}}{C_S(0)m_S}$

 Second defn (right fig): Ratio of susceptibilities

$$\chi_{PS} = \sum_{z} C_{PS}(z); \quad \chi_{S} = \sum_{z} (-1)^{z} C_{S}(z)$$

Summary

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Summary

- Calculated the screening masses in 2-flavour QCD with naive staggered fermions and Wilson gauge action
- Temperature range scanned in our study $0.89 1.92T_c$ on $N_{\tau} = 6$ lattices spanning both the hadronic and the QGP phase
- Pion seems to be a good eigenstate even for temperatures above T_c
- Chiral symmetry seems restored only at T ~ 1.33T_c in spin-0 channel
- Scalar meson, known to decay at T = 0 is stable at $T = 0.94T_c$

More analysis details

•
$$T = 0.94 T_c$$

• $am_q = 0.0167$

 valence and sea quark mass identical

Tolerance of the CG algorithm $\epsilon = 10^{-5}$

Increasing the tolerance by an order of magnitude required ~ 250 more iterations of the CG routine $\bigcirc \texttt{back}$

Summary

Summary

RBC-Bielefeld Results

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Summary

ILGTI Results

▶ back

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの