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Introduction

@ Understanding the phase diagram of QCD on the temperature—
chemical potential (T,p4) plane has many important implications in
cosmology, in astrophysics and in the phenomenology of heavy ion
collisions.

@ Unfortunately, the study of QCD at nonzero baryonic density by
numerical simulations on a space-time lattice is plagued by the well-
known sign problem : the fermion determinant is complex and the
Monte Carlo sampling becomes unfeasible.

@ One of the possibilities to circumvent the sign problem is to perform
Monte Carlo numerical simulations for imaginary values of the
chemical potential (where the fermionic determinant is real and the
sign problem is absent) and to infer the behavior at real chemical
potential by analytic continuation.
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The method of analytic continuation

Advantages:

@ coupling B and chemical potential U can be varied independently

@ no limitation for increasing lattice size

Drawbacks:

@ extent of the attainable domain with real [ is limited by:

» the periodicity and non-analyticities

» the accuracy of the interpolation of data for imaginary [



Analytic continuation of physical observables

A careful numerical analysis in SU(2) has shown that a considerable improvement can be
achieved if ratio of polynomials are used as interpolating function
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The main goal of the application
of the method of analytic
continuation is locating the

| critical line on the (T,p)-plane
for real




Analytic continuation of the critical line: HOW TO

»

(&

/1

() locate the (pseudo-)critical [B’s for several fixed values of the

imaginary chemical potential, by looking for peaks in the susceptibilities
of a given observable.

) interpolate the critical B’s obtained at imaginary chemical potential
with an analytic function of Y, to be then extrapolated to real chemical

potential

@
if

{

&

&) if the theory is free from the sign problem, compare the extrapolated curve

with the direct determinations of the critical B’s at real chemical potential.

Observables: chiral condensate, Polyakov loop, plaquette.

On a finite volume there are no true non analyticities at the transition line. The location of the critical
line may be dependent on the observable chosen to probe the transition.



Test of the method of analytic continuation in

QCD-like theories

@ SU2) Ni=8 @ SU(3) Nr=8 finite isospin

u2< polynomial ratio O(u*)/O(u)
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Non-linear terms in the dependence of Bc on Y? in general cannot be
neglected: the prediction for the pseudocritical couplings at real

chemical potentials may be wrong if data at imaginary [ are fitted
according to a linear dependence.




The aim of the present work is to apply the experience
acquired through the study of sign-pbroblem-free-theories
to the

determination of the
pseudocritical line

in SU(3) N4

at finite baryon density




NUMERICAL SET-UP

Q@ SU(3) N=4 degenerate standard staggered fermions of mass am=0.05
Q@ 123 x 4 lattice

Q@ Monte Carlo simulation using the exact ® algorithm, properly modified
for the inclusion of a finite chemical potential

@ Typical statistics: ~ 10k trajectories of | molecular dynamics unit, growing
up to 100k trajectories for 4-5 [ values around the peak

@ Simulations performed using the computer facilities at the INFN apeNEXT
Computing Center in Rome and of the PC clusters of the INFN Bari Computer
Center for Science



The critical coupling B. at a given chemical potential [

@ SU(3) Nf=4 : the critical line is a line of first order transitions in the first

Roberge-Weiss sector —(7r/3)% < (u/T)* < 0

@ Tunneling between the different phases every few thousands trajectories:
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Determination of B¢ (U?)

The critical B(M?) is
determined as the
value for which the
susceptibility of (the
real part of) the
Polyakov loop
exhibits a peak

check:

@ [ determined by means of Ferrenberg-Swendsen method
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@ [ determined by estimating the point where the peaks in the distribution of
Re(Polyakov) have equal height

‘ Bc determinations do not change if the susceptibility of another observable is used




*) in a few cases
SU(3) Ni =4 123 x 4 lattice, am=0.05 (%) | ‘rexors 104
lattice: negligible
corrections within the
reported errors

data do not
5.04259(30) .
5.045 50(30) _ ||ne LIP along
5.048 39(30) :
5.05121(33) 1
5.05590(31) . ¢ lattice 123 x 4 a St ra Ight
5.06150(30) .
5.06647(35) I INe '

5.07136(40)
5.076 64(30)
5.08031(38)
5.08419(33)
5.086 68(30)
5.08961(30)
5.09243(30)
5.09407(30)
5.095 86(30) . .
5.007 54(40) B ( )

5.09970(42) c(M“) cannot
5.10092(31)

5.10343(30) . be param etrized

5.1043(5) | L

006 -0.05 -0.042 -0.03 -0.02 -O0. by a POI)'nOmIaI
(aw) )
of order U




ag + a1 pu? + azp* + asp®
1+ asp? 4 aspt

fit function:

ag a x2/d.o.f. (@ in )
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ratio of polynomials fit:

O(H)/O(1?)

ag a; ay as ay das x2/d.o.f. (apmin)?
5.04198(22) —(0.8839(48) 6.63 —(/12)?
5.04256(24) —0.8509(71) 0.85 —0.235?
5.04311(36) —0.761(26) 1.77(36) 2.13 —(/12)?
5.042 54(50) —0.892(72) —3.1(2.4) —46.(23.) 1.10 —(7/12)?
5,042 77(27) —(.8509* —1.70(55) —34 0(8.2) 1.20 —(7/12)2
5.042 84(28) 55.799(14) 11.2266(27) 1.741(29) 1.13 —(7/12)?
5.04276(27) 58.196(12) —9.46(13) 11.7044(24) 1.09 v

511 —

|
51

¢ \lattice 12° x 4
— katio (4,2) N

O lattice 12° x 4
— ratio (4,2)

5.09

5.08

5.07

5.06

5.05

T
5'0-3.08 -0.




A new fit strategy

@ write down the interpolating function in physical units

{Tc(u)} L 14 Cp?/T2(1)
T.(0) 1+ Ap?/T2(p) + Bpt /T2 (1)

1
Q@ implicit relation between B on P2 can be obtained using(*) h= a(B)L:

1+ Ap? /T3 +Bp* /T
az(ﬂc(uz))h—loop — az(ﬂc(o))h—loopx li—l—/Cu2/T§ /

(*) Strictly speaking the lattice spacing depends also on the bare quark mass am, which we fix. This means that the
physical quark mass in our runs changes slightly as we change P. However in the following evaluation, which is only
based on the perturbative 2-loop B-function, we shall neglect such dependence.



Interpolating function in physical units:
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Estrapolation of the critical line

{TC(H)F _ 1 4 Cp? /T2 (1) Under the —

T.(0)] ~— 1+ Ap? /T2 (p) + Bt /T4(p) assumption (*) that:
the physical fit gives
the correct behavior

SU(3) N=4 123 x 4 of the critical line at

real 4 down to T=0

\ 4

estimate of the critical
value of U on the T=0 axis
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(*) (no valid argument can support
this assumption)




QUESTION:

Do the successtul
interpolations we found 1n

the p? <0 region have a
consistent extrapolation to
>0




Different interpolations lead to somewhat distinct extrapolations (one

cannot rely on a unique extrapolation, except in the region Y/T < 0.6)

quadratic, “2min =(0.235 i)2
| ! |

0.5 1
w/T

Shortcoming of
analytic
continuation @

could be less severe in the

more physical case of 2

flavors or 2+1 flavors (*)
(thanks to Ph. De Forcrand)

non-linear contributions should be needed to bend the critical line towards a critical baryon chemical potential of the

(* where the curvature of the critical line at u=0 (i.e. the linear term in pY?) is smaller than in the N¢ = 4 case and larger

order of | GeV atT = 0, so that the sensitivity to such non-linear contributions could be hopefully enhanced



Determinations of the critical line in the literature together with our results
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a “‘combined approach™ limitation due to the inhomogeneity of the data
include in our fit data at real presently available

chemical potential available
from the literature acceptable value of X%/d.o.f. only for Y/T < 0.6




sSummary & Conclusions

We have revisited the application of the method of analytic continuation from imaginary to real
chemical potential in QCD with Ni=4 degenerate flavors:

() to determine precisely the pseudo-critical line Bc(M2) in the region of negative p? (20 data points almost
uniformly distributed in the region -(1/12)? < (ap)? < 0)

L) to exploit interpolating functions sensitive to possible deviations of the critical line from the quadratic

behavior in U for larger absolute values of P (these deviations were clearly seen in QCD-like theories, such as 2-
color QCD and finite isospin QCD, where it was given compelling evidence that their neglect could mislead the analytic
continuation to real chemical potential)

L) to extrapolate the newly adopted interpolations to the region of real M and to re-determine, therefore, the
critical line in QCD.

Outcome

@ Deviations from the quadratic behavior in [ of Bc(M?) at negative p? visible in QCD with Nt=4

Q@ Several kinds of functions able to interpolate them, leading to extrapolations to real Y which start diverging
from each other for /T = 0.6

Outlook

Q The shortcomings of the method of analytic continuation could be less severe for Nt=2 or N¢=2+|
(sensitivity to nonlinear terms in P2 could be enhanced).

@ Possible improvement by theoretical development able to discriminate between interpolations, or by a

-

combined numerical strategy aimed at gathering information from different approaches (i.e. rewght.,
canonical,...) applied so far independently from each other.




