Dimensional reduction and confinement from five dimensions

Francesco Knechtli Bergische Universität Wuppertal

with Nikos Irges and Antonio Rago

Lattice 2010, Villasimius, Sardegna, 18 June 2010

- **O** Meanfield laboratory for 5d gauge theories
- O Continuum limit at fixed anisotropy
- **O** Dimensional reduction and confinement
- O Monte Carlo results

Gauge-Higgs unification

$$\underbrace{\underline{A}_{M}}_{\text{5d gauge field}} \xrightarrow{\mathcal{M}_{5} = E_{4} \times S^{1}} \{\underbrace{\underline{A}_{\mu}}_{W: \text{ 4d gauge field}}, \underbrace{\underline{A}_{5}}_{H: \text{ 4d Higgs}}\}$$

- O Higgs potential is generated by quantum corrections and can trigger spontaneous symmetry breaking (Hosotani mechanism)
- **O** 5d gauge symmetry keeps the potential finite
- O Triviality requires a cut-off \longrightarrow lattice
- \bigcirc Does a continuum limit exist non-perturbatively? \longrightarrow meanfield, Monte Carlo
- O Dimensional reduction?

Meanfield expansion [Drouffe and Zuber, 1983]

SU(N) gauge links U are replaced by $N\times N$ complex matrices V and Lagrange multipliers H

$$\langle \mathcal{O}[U] \rangle = \frac{1}{Z} \int \mathrm{D}V \int \mathrm{D}H \, \mathcal{O}[V] \mathrm{e}^{-S_{\mathrm{eff}}[V,H]}$$

$$S_{\mathrm{eff}} = S_G[V] + u(H) + (1/N) \mathrm{Re} \operatorname{tr}\{HV\}, \quad \mathrm{e}^{-u(H)} = \int \mathrm{D}U \, \mathrm{e}^{(1/N) \mathrm{Re} \operatorname{tr}\{UH\}}$$

Saddle point solution (background)

$$H \longrightarrow \overline{H}\mathbf{1}, V \longrightarrow \overline{V}\mathbf{1}, S_{\text{eff}}[\overline{V}, \overline{H}] = \text{minimal}$$

Corrections calculated from Gaussian fluctuations

$$H = \bar{H} + h$$
 and $V = \bar{V} + v$

Covariant gauge fixing is imposed on v [Rühl, 1982]

Our setup

 $L_T \times L^3 \times L_5$ lattice, SU(2) gauge theory with anisotropic plaquette action

$$S_W = \frac{\beta}{4} \left[\frac{1}{\gamma} \sum_{\text{4d-p}} \operatorname{tr} \left(1 - \{U_p\} \right) + \gamma \sum_{\text{5d-p}} \operatorname{tr} \left(1 - \{U_p\} \right) \right]$$

The background is \overline{v}_0 along directions $\mu = 0, 1, 2, 3$ and \overline{v}_5 along the extra dimension Observables

- O Static potential V_4 along the 4d hyperplanes and V_5 along the extra dimension
- O Higgs (1st order) m_H and gauge boson (2nd order) m_W masses

Spectrum

The gauge boson mass at 2nd order depends significantly only on ${\cal L}$

$$a_4 m_W = c_L / L$$

Extrapolation $L \rightarrow \infty$ is consistent with zero (we cannot exclude a exponentially small mass)

Continuum limit at fixed anisotropy

The second order phase transition separating the d-compact phase from the layered phase:

Continuum limit at fixed anisotropy

Lines of constant physics [Irges and Knechtli, 2010]

 $(L = L_T = L_5 \longrightarrow \infty, \ \beta \longrightarrow \beta_c)|_{\gamma,\rho=m_W/m_H} \iff \text{continuum limit}$

A physical scale r_s is defined through $r^2 F(r)|_{r=r_s} = s = 0.2$ with $F = V'_4$. Fixing $\gamma = 0.55$:

Dimensional reduction and confinement

- The force F_4 has a physical nonzero \bigcirc continuum limit
- F_5/F_4 tends to zero in the \bigcirc continuum limit \Rightarrow localization
- Dimensional reduction to 4d Georgi- \bigcirc Glashow model. It must be in the confined phase

Dimensional reduction and confinement

Line of constant physics $\gamma = 0.55$, $\rho = 0.625$: confinement

$$V_4(r) = \mu + \sigma r + c_0 \log(r) + \frac{c_1}{r} + \frac{c_2}{r^2}, \quad r/r_s > 1$$

Dimensional reduction and confinement

Line of constant physics $\gamma=0.55$, $\rho=0.625$: confinement

$$V_4(r) = \mu + \sigma r + c_0 \log(r) + \frac{c_1}{r} + \frac{c_2}{r^2}, \quad r/r_s > 1$$

A large negative log term is present (origin?)

There are also higher order corrections

 β_5

Monte Carlo results: $\beta_4 = \beta / \gamma$, $\beta_5 = \beta \gamma$

11

Monte Carlo results

- We confirm [Ejiri, Kubo and Murata, 2000; de Forcrand, Kurkela and Panero, 2010]:
 - in infinite volume there is only a first order bulk phase transition (shaded line);
 - at $\gamma > 1$ there are second order phase transitions due to compactification
- O We located second order phase transitions when

 $\gamma < 1$ and $L_T \ll L, L_5$

O We can accurately compute the static potential, example: $32^4 \times L_5 = 16$ lattice in the deconfined phase at $\beta_5 = 1.24$, $\beta_4 = 2.10$

2 levels of 4d spatial HYP smearing

Outlook

Meanfield:

- Check of the convergence of the meanfield expansion: computation of second order correction to the Higgs mass, check finite size effects (ongoing)
- Spontaneous symmetry breaking: implementation of orbifold boundary conditions in the meanfield laboratory (ongoing)
- O Generalization to SU(N)

Monte Carlo:

- O Computation of the static potential and of the order of the phase transition with $L_T = 4$ at $\gamma \simeq 0.5$ (ongoing)
- Study of further geometries (ongoing)
- O Computation of the spectrum, orbifold boundary conditions, SU(3)

... in order to be ready with predictions when first LHC results will come!