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I. Motivation

Wilson Dirac Operator

Lattice Results
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Wilson Dirac operator

Wilson introduced the Wilson term to eliminate doublers.

DW =
1

2
γµ(∇µ + ∇∗

µ) − 1

2
a∇∗

µ∇∗
µ.

{DW , γ5} 6= 0.

DW = γ5D†
W γ5.

Block structure

DW =

 

aA id

id† aB

!

with A† = A, B† = B.
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Onset of the Aoki Phase

W

8a
2

m

W

D

W

λ0

ρ (λ)
5

D
5

m 2− 8a

Wilson Dirac Spectra – p. 6/28



Spectrum ofD5 for a = 0
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The microscopic spectral density of γ5(DW + m) for m = 3 , ν = 0 and a = 0 for different

number of flavors. Results are shown for Nf = 0 (blue) and Nf = 2 (red).

See talk of Poul Damgaard for effect of dynamical quarks at a 6= 0 .
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Motivation

Lattice studies of the distribution of the smallest eigenvalue of the Wilson Dirac
operator. Del Debbio-Giusti-Lüscher-Petronzio-Tantalo-2005

Mean fields studies of the spectrum of the Wilson Dirac operator based on chiral
perturbation theory. Sharpe-2006

Lifshitz tail states in superconducting quantum dots with magnetic
impurities. Lamacraft-Simons-1996

Discussions in the literature on the existence of the Aoki Phase.
Sharpe-Singleton-1998, Shindler-2009, Azcoiti-Di Carlo-Follana-Vaquero-2009

The existence of a gap in the spectrum of D5 is important to evaluate its inverse
efficiently.
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Lattice Results for the Wilson Dirac Spectrum
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Spectral density of γ5(DW +m) on a 48×243 lattice.
Lüscher-2007
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Hamiltonian in the presence of mag-
netic impurities.
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Distribution of the Smallest Eigenvalue
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Distribution of the smallest eigenvalue of
the Hermitian Wilson Dirac operator on
a 64× 323 lattice for two different values
of the quark mass.
Del Debbio-Giusti-Lüscher-Petronzio-Tantalo-
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Questions

√

Can we obtain analytical results for the Dirac spectrum in the microscopic domain?

⋆ Effect of topology?

⋆ Effect of the fermion determinant?

⋆ Distribution of the smallest eigenvalue?
√

How does the probability to find more than ν real eigenvalues scale with the volume?
√

Is there a Random Matrix Theory that describes the discretization errors of the
Wilson Dirac operator?
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III. Chiral Lagrangian for the Dirac Spectrum

Chiral Lagrangian.

γ5 -Hermiticity and the Sign of W8 .

Chiral Lagrangian for the Generating Function of the
Wilson Dirac Spectrum.

Microscopic Spectral Density
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Remarks

In order to access the spectrum of γ5(DW + m) we introduce a twisted mass in the
fermion determinant

det[DW + m + γ5z] = det[γ5(DW + m) + z].

The low energy limit of the corresponding partition function is given by a chiral
Lagrangian that up to low energy constants is uniquely determined by symmetries.

In the microscopic domain, where the combinations

mV, zV, a2V

are kept fixed in the thermodynamic limit, the m , z and a dependence of the chiral
Lagrangian resides in the zero momentum part of the partition function that
factorizes form the nonzero momentum part.
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Chiral Lagrangian

In the microscopic domain the QCD partition function in the sector of topological charge
ν is given by

Zχ
ν (m, z, a) =

Z

U∈U(Nf )
dUdetνUe

1
2

mV ΣTr(U+U†)+ 1
2

zV ΣTr(U−U†)−a2V W8Tr(U2+U−2).

Sharpe-Singleton-1998, Rupak-Shoresh-2002, Bär-Rupak-Shoresh-2004,

Damgaard-Splittorff-JV-2010

√

W8 > 0

The mean field result of the spectrum of D5 has a gap [−zc, zc] given by
zc = m[1 − (8a2W8/mΣ)2/3]3/2.

√

W8 < 0

Changing the sign of W8 corresponds to a → ia . Then the continuum Wilson Dirac
operator is anti-Hermitian with eigenvalues on the imaginary axis, but the spectrum
of γ5(DW + m) becomes complex.

Then. this chiral Lagrangian cannot be used to calculate the spectrum of D5 .
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γ5-Hermiticity and Sign of W8

Because of D†
5 = D5 we have the QCD inequality

Z
QCD,Nf =2
ν (m, z) = 〈det2(γ5(DW + m) + z)〉 > 0 for m, z real.

By changing variables U → iU it follows that

Z
χ Nf
ν (0, 0, W8) = (i)Nf νZ

χ Nf
ν (0, 0,−W8).

Therefore, the partition function for W8 < 0

changes sign as a function of m .
Akemann-Damgaard-Splittorff-JV-2010
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Generating Function for Wilson Dirac spectrum

The generating function for the Wilson Dirac spectrum is given by

Z(m, z, z′, a) =

fi

det(DW + m)
det(DW + m + γ5z)

det(DW + m + γ5z′)

fl

.

Damgaard-Splittorff-JV-2010

The resolvent is equal to

G(z, m, a) = lim
z′→z

d

dz
Z(m, z, z′, a)

˛

˛

˛

˛

z′=z

,

and the spectral density is given by

ρ(z) =
1

π
Im G(z), for z real.

For z ≪ ΛQCD the z -dependence of the generating function is given by a chiral
Lagrangian that is uniquely determined by symmetries that should be compatible with
the convergence of the bosonic integrals. In the microscopic domain the partition
function reduces to a super-unitary matrix integral.
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Generating Function for the Wilson Dirac
Spectrum

The generating function for the Wilson Dirac spectrum is given by

Z(m, z, a) =

Z

U∈Gl(Nf +1|1)
dUei 1

2
mV ΣTr(U−U†)+i 1

2
V ΣTr(ζU+U†ζ)−i2a2V W8Tr(U2+U−2).

Here, ζ3 = diag(0, 0, z, z′) .
Damgaard-Splittorff-JV-2010,Damgaard-Osborn-Toublan-JV-1998

√

The transformation U → iU is required to get convergent integrals in the
noncompact sector for W8 > 0 .

√

For Nf = 0 the integral reduces to one dimensional integrals. See talk of Poul
Damgaard for Nf = 1 .
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Plots of the Spectral Density
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The microscopic spectrum of γ5(DW + m)

for mV Σ = 3 , ν = 0 and a
√

W8V = 0 ,
0.03 , and 0.250 . The ν = 0 spectrum is
reflection symmetric about x = 0 .

Damgaard-Splittorff-JV-2010
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The microscopic spectrum of γ5(DW + m)

for mV Σ = 3 , ν = 2 and a
√

W8V =

0.125, 0.250 and 0.500 , respectively.
Damgaard-Splittorff-JV-2010

The peak at x = m in the left figure is due
to the measure. The peak height for a = 0

is equal to mV Σ .
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Distribution of “Topological” Eigenvalues

For a = 0 the eigenvalue density of D5 can be decomposed as

ρν
5(λ) = νδ(λ − m) + ρλ>m(λ).

For a 6= 0 the width of the peak at λ = m becomes finite.

√

For small a , this distribution is exactly the
spectral density of the real eigenvalues of
DW .

√

For ν = 1 the result is given by (see red
curve in figure)

ρν=1
5,topo(x) =

1

4a
√

πV W8
e
−

V Σ2(x−m)2

16a2W8 .

√

The low-energy constant W8 can be
obtained from the width of the distribution of
the smallest eigenvalue.
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Tail States

For |z − m|/a fixed for a → 0 the spectral density inside the gap can also be obtained
from a saddle point analysis:

ρ(z) ∼ e−Σ2V (z−m)2/16a2W8 for 0 < z ≪ m.

The width parameter is given by Damgaard-Splittorff-JV-2010

σ2 =
8a2W8

V Σ2
,

σ

∆λ
=

√
8

π
a
p

W8V .

This is exactly the scaling behavior found by Del Debbio-et al-2006.
√

Typical lattice parameters are mV Σ = 6 and a
√

W8V = 0.2 − 0.5 .
√

For mV Σ ≫ 1 and a2W8V ≫ 1 the distribution of the smallest eigenvalue is given
by the Tracy-Widom distribution.
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V. Random Matrix Theory

Random Matrix Theory for the Wilson Dirac Operator
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Random Matrix Theory for the Wilson Dirac
Operator

Since the chiral Lagrangian is determined uniquely by symmetries, it also can be
obtained from a random matrix theory with the same symmetries. In the sector of
topological charge ν the random matrix partition function is given by

Zν
Nf

=

Z

dAdBdW detNf (DW + m + zγ5) P (DW ),

with

DW =

0

@

aA C

−C† aB

1

A . and A† = A, B† = B.

A is a square matrix of size n× n , and B is a square matrix of size (n + ν)× (n + ν) .
The matrix C is a complex n × (n + ν) matrix. Damgaard-Splittorff-JV-2010

In the microscopic domain, the Random Matrix Theory partition function reduces to the
chiral Lagrangian introduced before with W8 > 0 .

This was not the case for earlier attempts to formulate random matrix theories for the
Wilson Dirac operator. Jurkiewicz-Nowak-Zahed-1996,Hehl-Schäfer-1999
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VIII. Conclusions

√

We have obtained the microscopic spectral density of the Wilson Dirac operator at
nonzero lattice spacing.
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√
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√

Topological charge has a strong effect on the distribution of the gap.
√

The width of the distribution of the smallest eigenvalue scales as a/
√

V suggested
by lattice simulations.

√

For small a the density of states inside the gap has a Gaussian tail.
√

Random Matrix Theory has been so successful because it is based based on
symmetries, universality and the separation of scales. Ideas of Ken Wilson have had
a strong impact on its development. In fact, Wilson’s first paper was in fact on
Random Matrix Theory (J. Math. Phys. 1962).
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Spectral Flow at Nonzero Topology
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The topological charge is given by the difference of the number of positive eigenvalues for large
positive charge and the number of positive eigenvalues for large negative mass.

If φ is an eigenfunction of a topological zero mode,then

a = 0 : DW φ = 0, γ5φ = φ, =⇒ γ5(DW + m)φ = mφ.

a 6= 0 : γ5(DW + mk)φk = 0 =⇒ DW φk = −mkφk.

For a 6= 0 the flow-line may cross the x -axis more than once so that the number is real
modes is larger than ν . This generically does not happen in the ǫ domain.
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Dirac Spectrum for a = 0

For a = 0 we have that

γ5(DW + m) =

0

@

m C

C† −m

1

A .

C can be brought to a diagonal form by a unitary
transformation. This results in the spectrum of D5

(λk − m)2 − |ck|2 = 0 =⇒ λk = ±
q

m2 + |ck|2

That is why γ5(DW + m) has a gap [−m, m] for
a = 0 . For a 6= 0 states intrude inside the gap.
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The microscopic spectral density of γ5(DW +

m) for m = 3 , ν = 0 and a = 0 for

different number of flavors. Results are shown

for Nf = 0 (blue) and Nf = 2 (red).
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Mean Field Result for the Gap

W8 > 0

The spectral density of γ5(DW + m) vanishes if the correspond resolvent is real.
For large mV Σ and a2V W8 the resolvent can be calculated by a saddle point
approximation. The result for the spectral gap [−zc, zc] is given by (in units where
Σ = 1 and W8 = 1 )

zc = m[1 − (8a2/m)2/3]3/2.

The gap closes when 8a2 = m . This is the onset of the Aoki phase.

W8 < 0

The spectrum of D5 = γ5(DW + m) is complex and this chiral Lagrangian cannot
be used to calculate the spectrum of D5 . To calculate the spectrum one has to
introduce a partition function with quarks and conjugate anti-quarks as is the case
for QCD at nonzero chemical potential (see Stephanov-1996).
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Microscopic Spectral Spectral Density

The resolvent is given by

Gν(z, m; a) =

Z ∞

−∞
ds

Z π

−π

dθ

2π

i

2
cos(θ)eSf +Sbe(iθ−s)ν

× (−m sin(θ) + im sinh(s) + iz cos(θ) + iz cosh(s)

+4a2[cos(2θ) + cosh(2s) + (eiθ+s + e−iθ−s)] + 1
”

.

Here,

Sf = −m sin(θ) + iz cos(θ) + 2a2 cos(2θ),

Sb = −im sinh(s) − iz cosh(s) − 2a2 cosh(2s).

The microscopic quenched spectral density is equal to

ρν
5(x, m; a) =

1

π
Im[Gν(x, m; a))].

Damgaard-Splittorff-JV-2010
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Density of Real Eigenvalues
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The quenched spectral density of the topo-
logical real eigenvalues of DW for ν = 4

and a = 0.25 .
Damgaard-Splittorff-JV-2010

The real eigenvalues of DW give rise to a
cut on top of the cloud of complex eigenval-
ues. This implies that the spectral density of
the real modes is given by the discontinuity
of the chiral condensate. Because Σ(m) is
real for real m the discontinuity is given by
the imaginary part.

ρtopological(m) =
1

π
ImΣ(m, a).

For large ν the distribution of real eigenvalues approaches a semicircle. This may be the
first time that a semi-circular distribution of eigenvalues has been in a physical system.
Note that since this result is derived from a chiral Lagrangian, it is universal.
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