Lattice QCD study of baryon-baryon interactions in

 the $(S, I)=(-2,0)$ system using the coupled-channel formalism
Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration

```
HAL(Hadrons to Atomic nuclei from Lattice) QCD Collaboration
\begin{tabular}{llll} 
S. Aoki & T. Doi & T. Hatsuda & Y. Ikeda \\
(Univ. of Tsukuba) & (Univ. of Tsukuba) & (Univ. of Tokyo) & (RIKEN) \\
T. Inoue & N. Ishii & K. Murano & H. Nemura \\
(Nihon Univ.) & (Univ. of Tokyo) & (KEK) & (Tohoku Univ.)
\end{tabular}
Hadrons to Atomic nuclei
```


Introduction

Strangeness in nuclei opened the new frontier of nuclear physics.
Quest for the hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions
One of the most important subject in the (hyper-) nuclear physics
Their informations enable us to deeper understand the baryon-baryon interactions.

This work:
Baryon-baryon interactions in strangeness $=-2$ and isospin $=0$ system
We want to reveal the $\Lambda-\Lambda$ interaction from Lattice QCD simulation. The $\mathrm{SU}(3)$ invariant or breaking effects in the BB interaction.

The $\underline{\underline{\mathrm{SU}(3)} \text { singlet state }}$ is involved in this system.

Strength of $\Lambda \Lambda$ interaction

Conclusions of the "NAGARA Event",
The clear double-hypernuclear event has been confirmed.
Lower limit of H mass : $m_{H} \geq 2 m_{\Lambda}-7.3 \mathrm{MeV}$
The result demonstrates that the $\Lambda-\Lambda$ interaction is weakly attractive.

Channel coupling

Baryon-baryon system with strangeness $=-2$ and isospin $=0$
This state consistes of the $\Lambda \Lambda, N \Xi$ and $\Sigma \Sigma$ component

$$
\begin{array}{ll}
\mathrm{m}_{\Lambda \Lambda}=1115+1115=2230 \mathrm{MeV} & \Delta \mathrm{~m}=30 \mathrm{MeV} \\
\mathrm{~m}_{\mathrm{NE}}=940+1320=2260 \mathrm{MeV} & \\
\mathrm{~m}_{\Sigma \Sigma}=1190+1190=2380 \mathrm{MeV} & \Delta \mathrm{~m}=120 \mathrm{MeV}
\end{array}
$$

This is serious problem especially in $S=-2$ system.
BS wave function
$W\left(t-t_{0}, \vec{r}\right)=\sum_{\vec{x}} \sum_{i}\langle 0| B_{\alpha}(\vec{x}+\vec{r}) B_{\beta}(\vec{x})\left|m_{i}\right\rangle e^{-E_{i}\left(t-t_{0}\right)}\left\langle m_{i}\right| \bar{B}_{\gamma} \bar{B}_{\delta}|0\rangle$
Source operator can hit some states (m_{1}, m_{2}, \ldots) with the same quantum number.
Small energy difference becomes the origin of contaminations
We need a large $\mathrm{t}_{\text {sat }}$ to extract the ground state.
The ordinary HAL's procedure would not work well if the energy levels are close.
To remove contaminations from excited states
Variational method to separate the states

Dioagonalization of the source operator.

Valiational method

Linear combination of several independent operators

$$
\mathcal{I}(t)=\sum_{\alpha} v_{\alpha} \mathcal{J}^{\alpha}(t)
$$

Forming the effective mass of this operator

$$
m\left(T_{D}\right)=-\frac{1}{T_{D}} \ln \left[\frac{\left\langle\mathcal{I}\left(T+T_{D}\right) \mathcal{I}^{\dagger}(0)\right\rangle}{\left\langle\mathcal{I}(T) \mathcal{I}^{\dagger}(0)\right\rangle}\right]=-\frac{1}{T_{D}} \ln \left[\frac{\sum_{\alpha \beta} v_{\alpha} v_{\beta} C_{\alpha \beta}\left(T+T_{D}\right)}{\sum_{\alpha \beta} v_{\alpha} v_{\beta} C_{\alpha \beta}(T)}\right]
$$

with the correlation matrix defined as

$$
C^{I J}(T) \equiv\left\langle\mathcal{J}_{\text {snk }}^{I}(T) \mathcal{J}_{\text {src }}^{I \dagger}(0)\right\rangle
$$

Flat wall sink was considered to symmetrize the correlation matrix

Search the stationary point of m against v

$$
\frac{\partial m\left(T_{D}\right)}{\partial v_{\gamma}}=0
$$

$$
C\left(T+T_{D}\right) \vec{v}=e^{-m\left(T_{D}\right) T_{D}} C(T) \vec{v}
$$

We can obtain the source operators I_{0}, I_{1}, \ldots

$$
\text { which strongly couples to the ground state, } 1^{\text {st }} \text { excited state, } \ldots .
$$

BS wave functions with diagonalized sources.

We prepare three operators for $(\mathrm{S}, \mathrm{I})=(-2,0)$ system.

$$
J_{\Lambda \Lambda}(\vec{x})=\Lambda(\vec{x}) \Lambda(0) \quad J_{N E}(\vec{x})=N(\vec{x}) E(0) \quad J_{\Sigma \Sigma}(\vec{x})=\sum(\vec{x}) \Sigma(0)
$$

After diagonalizing source operators, we can select three states with $E_{0^{0}} E_{l}$ and $E_{2^{2}}$. Using diagonalized source operators...

BS wave function in $(S, I)=(-2,0)$ channel

Ground state

$\Psi_{\Lambda \Lambda}\left(x, E_{0}\right) \equiv\langle 0\| J_{\Lambda \Lambda}(x)\left\|E_{0}\right\rangle$	$\Psi_{\Lambda \Lambda}\left(x, E_{1}\right) \equiv\langle 0\| J_{\Lambda \Lambda}(x)\left\|E_{1}\right\rangle$
$\Psi_{N \Xi}\left(x, E_{0}\right) \equiv\langle 0\| J_{N \Xi}(x)\left\|E_{0}\right\rangle$	$\Psi_{N E}\left(x, E_{1}\right) \equiv\langle 0\| J_{N \Xi}(x)\left\|E_{1}\right\rangle$
$\Psi_{\Sigma \Sigma}\left(x, E_{0}\right) \equiv\langle 0\| J_{\Sigma \Sigma}(x)\left\|E_{0}\right\rangle$	$\Psi_{\Sigma \Sigma}\left(x, E_{1}\right) \equiv\langle 0\| J_{\Sigma \Sigma}(x)\left\|E_{1}\right\rangle$

2nd excited state

$$
\begin{aligned}
& \Psi_{\Lambda \Lambda}\left(x, E_{2}\right) \equiv\langle 0| J_{\Lambda \Lambda}(x)\left|E_{2}\right\rangle \\
& \Psi_{N \Xi}\left(x, E_{2}\right) \equiv\langle 0| J_{N E}(x)\left|E_{2}\right\rangle \\
& \Psi_{\Sigma \Sigma}\left(x, E_{2}\right) \equiv\langle 0| J_{\Sigma \Sigma}(x)\left|E_{2}\right\rangle
\end{aligned}
$$

We can obtain wave functions, $\Psi_{\Lambda \Lambda} \Psi_{N \Sigma} \Psi_{\Sigma \Sigma}$ for each energy.
3 diagonalized sources; 3 independent sink operators
$\rightarrow \quad 9$ energy independent potentials

We should consider the coupled channel Schrödinger equarion.

Coupled channel Schrödinger equation

Asymptotic region $(x \rightarrow \infty)$

$$
\left(E-M_{\alpha}-\frac{p_{\alpha}^{2}}{2 \mu_{\alpha}}\right) \Psi_{\alpha}(\vec{x}, E)=0 \quad p_{\alpha}: \text { asymptotic momentum of channel } \alpha .
$$

We can determine the asymptotic momentum $p_{\underline{\alpha}^{-}}$

The region where the interaction is active

Assuming that potentials are energy independent,
Coupled channel Schrödinger equation.

$$
\left(\frac{p_{\alpha}^{2}}{2 \mu_{\alpha}}-\frac{\nabla^{2}}{2 \mu_{\alpha}}\right) \Psi_{\alpha}(\vec{x}, E)=V_{\alpha \alpha}(\vec{x}) \Psi_{\alpha}(\vec{x}, E)+V_{\alpha \beta}(\vec{x}) \Psi_{\beta}(\vec{x}, E)+V_{\alpha \gamma}(\vec{x}) \Psi_{\gamma}(\vec{x}, E)
$$

$$
\left(\begin{array}{l}
V^{\Lambda \Lambda, \Lambda \Lambda}(\vec{x}) \\
V^{\Lambda \Lambda, N \Xi}(\vec{x}) \\
V^{\Lambda \Lambda, \Sigma \Sigma}(\vec{x})
\end{array}\right)=\frac{1}{2 \mu_{\Lambda \Lambda}}\left(\begin{array}{l}
\Psi_{0}^{\Lambda \Lambda} \Psi_{0}^{N \Xi} \Psi_{0}^{\Sigma \Sigma} \\
\Psi_{1}^{\Lambda \Lambda} \Psi_{1}^{N \Xi} \Psi_{1}^{\Sigma \Sigma} \\
\Psi_{2}^{\Lambda \Lambda} \Psi_{2}^{N \Xi} \Psi_{2}^{\Sigma \Sigma}
\end{array}\right)^{-1}\left(\begin{array}{l}
\left(\nabla^{2}+p_{0}^{2}\right) \Psi_{0}^{\Lambda \Lambda}(\vec{x}) \\
\left(\nabla^{2}+p_{1}^{2}\right) \Psi_{1}^{\Lambda \Lambda}(\vec{x}) \\
\left(\nabla^{2}+p_{2}^{2}\right) \Psi_{2}^{\Lambda \Lambda}(\vec{x})
\end{array}\right)
$$

$$
\left(\begin{array}{l}
V^{N \Xi, \Lambda \Lambda}(\vec{x}) \\
V^{N \Xi, N \Xi}(\vec{x}) \\
V^{N \Xi, \Sigma \Sigma}(\vec{x})
\end{array}\right)=\frac{1}{2 \mu_{N \Xi}}\left(\begin{array}{l}
\Psi_{0}^{\Lambda \Lambda} \Psi_{0}^{N \Xi} \Psi_{0}^{\Sigma \Sigma} \\
\Psi_{1}^{\Lambda \Lambda} \Psi_{1}^{N \Xi} \Psi_{1}^{\Sigma \Sigma} \\
\Psi_{2}^{\Lambda \Lambda} \Psi_{2}^{N \Xi} \Psi_{2}^{\Sigma \Sigma}
\end{array}\right)^{-1}\left(\begin{array}{l}
\left(\nabla^{2}+q_{0}^{2}\right) \Psi_{0}^{N \Xi}(\vec{x}) \\
\left(\nabla^{2}+q_{1}^{2}\right) \Psi_{1}^{N \Xi}(\vec{x}) \\
\left(\nabla^{2}+q_{2}^{2}\right) \Psi_{2}^{N \Xi}(\vec{x})
\end{array}\right)
$$

We can obtain the potential matrix. Hermiticity can be checked as well.

$$
\left(\begin{array}{l}
V^{\Lambda \Lambda, \Lambda \Lambda}(\vec{x}) \\
V^{\Lambda \Lambda, N \Xi}(\vec{x}) \\
V^{\Lambda \Lambda, \Sigma \Sigma}(\vec{x})
\end{array}\right)=\frac{1}{2 \mu_{\Sigma \Sigma}}\left(\begin{array}{l}
\Psi_{0}^{\Lambda \Lambda} \Psi_{0}^{N \Xi} \Psi_{0}^{\Sigma \Sigma} \\
\Psi_{1}^{\Lambda \Lambda} \Psi_{1}^{N \Xi} \Psi_{1}^{\Sigma \Sigma} \\
\Psi_{2}^{\Lambda \Lambda} \Psi_{2}^{N \Xi} \Psi_{2}^{\Sigma \Sigma}
\end{array}\right)^{-1}\left(\begin{array}{l}
\left(\nabla^{2}+k_{0}^{2}\right) \Psi_{0}^{\Sigma \Sigma}(\vec{x}) \\
\left(\nabla^{2}+k_{1}^{2}\right) \Psi_{1}^{\Sigma \Sigma}(\vec{x}) \\
\left(\nabla^{2}+k_{2}^{2}\right) \Psi_{2}^{\Sigma \Sigma}(\vec{x})
\end{array}\right)
$$

Numerical set up

$2+1$ flavor gauge configurations by CP-PACS/JLQCD.

- RG improved gauge \& $\mathrm{O}(\mathrm{a})$ improved clover quark
- $16^{3} \times 32$ lattice, $a=0.1209[f m], L=1.934[f m]$.
- Flat wall source is considered to produce S-wave B-B state.
- The supercomputer system Blue Gene/L at KEK had been used.
$>$ Following three configurations are used,

	$\kappa_{\mathrm{s}}=0.13710$		
	$\kappa_{u d}=0.13710$	$\kappa_{u d}=0.13760$	$\kappa_{u d}=0.13800$
π	1014.2 ± 1.1	873.7 ± 2.7	754.9 ± 5.3
K	1014.2 ± 1.1	914.5 ± 2.6	833.1 ± 5.1
$\mathrm{m}_{\pi} / \mathrm{m}_{\mathrm{K}}$	1	0.956	0.906
N	2026.2 ± 3.4	1797.1 ± 9.2	1631.1 ± 17.9
Λ	2026.2 ± 3.4	1827.0 ± 8.9	1683.4 ± 16.0
Σ	2026.2 ± 3.4	1833.8 ± 8.9	1697.3 ± 17.0
Ξ	2026.2 ± 3.4	1860.0 ± 8.5	1743.3 ± 14.8

Effective masses and eigen vectors

Eigen values (effective mass) of diagonalized correlator matrix

Eigen vectors of diagonalized correlator matrix

We choose the set of eigen vectors at $\mathrm{T}=5$ with $\mathrm{TD}=1$.

$B S$ wave functions for $(S, I)=(-2,0)$ channel.

The qualitative behavior of wave functions are same as the result of $S U(3)_{f}$ limit. We can see a dependence on the sink operator due to the $S U(3)_{f}$ breaking effect.

Diagonal part of potential matrix with $(S, I)=(-2,0)$.

Potential matrix

The potential matrix is calculated using wave functions at $t-t_{0}=10$.

- We can see an attraxtive pocket in the $\Lambda \Lambda$ and $N \Xi$ potentials.
- No attractive pocket can be seen in the $\Sigma \Sigma$ potential.

All potentials are repulsive at short range region.

- We can see the flavor dependence of the height of repulsive core.

Non-diagonal part of potential matrix with $(S, I)=(-2,0)$

Potential matrix $\quad\left(\begin{array}{lll}V_{\Lambda \Lambda-\Lambda \Lambda} & \frac{V_{\Lambda \Lambda-N E}}{V_{N E-N E}} & \frac{V_{\Lambda \Lambda-\Sigma \Sigma}}{V_{N E-\Sigma \Sigma}} \\ \hline \underline{V_{N E-\Lambda \Lambda}} \\ \underline{V_{\Sigma \Sigma-\Lambda \Lambda}} & \underline{V_{\Sigma \Sigma-N E}} & \frac{V_{\Sigma \Sigma-\Sigma \Sigma}}{V_{2 \Sigma}}\end{array}\right.$

$>$ The potential matrix is calculated using wave functions at $t-t_{0}=10$.

- The sign of transition potential is meaningless. (relative sign of wave functgions)
- The strengths of $\mathrm{V}_{\Lambda \Lambda-\Sigma \Sigma}$ and $\mathrm{V}_{\mathrm{NE}-\Sigma \Sigma}$ are similar.
- The $\Lambda \Lambda-N \Xi$ transition potential is much weaker than the others.

Hermiticity is proper within the error bar.

Effective masses and eigen vectors

Eigen values (effective mass) of diagonalized correlator matrix

Eigen vectors of diagonalized correlator matrix

We choose the set of eigen vectors at $\mathrm{T}=4$ with $\mathrm{TD}=2$.

Potential matrix

Comparison of potential matrices

Summaries and Outlooks

$>$ We have investigated the YY (and YN) interactions from lattice QCD.

- In order to deal with a variety of interactions, we devised the efficient way to treat it.
- Utilize the diagonalized source operators which enable us to obtain the wave functions with each energy.
- Assuming energy independence to the potential which allows us to construct the coupled channel equation for the considering system.
- Using this technique we can obtain the potential matrix for the coupled channel Schrödinger equation.
Δ We have considered the $\operatorname{SU}(3)_{\mathrm{f}}$ breaking effects of the YY (and YN) interactions by changing the light-flavored quark mass.
- We need more statistics to make a clear conclusion.
$>$ We confirmed that this technique working well.
Coupled channel technique is powerful and widely applicable
- We will challenge to reveal all baryon-baryon interactions with $S=0,-1, \ldots-6$ below the pion production threshold.

Backup slides

HAL QCD's strategy

Calculate Bethe-Salpeter (BS) wave function on any gauge configuration.

$$
W\left(t-t_{0}, \vec{r}\right)=\sum_{\vec{x}}\langle 0| B_{i}(t, \vec{x}+\vec{r}) B_{j}(t, \vec{x}) \bar{B}_{k}\left(t_{0}\right) \bar{B}_{l}\left(t_{0}\right)|0\rangle
$$

Define the non-relativistic Schrödinger equation (general form)

$$
\left(E-\frac{\nabla^{2}}{2 \mu}\right) \Psi(\vec{x})=\int U(\vec{x}-\vec{y}) \Psi(\vec{y}) d^{3} y
$$

Performing the derivative expansion for the interaction kernel

$$
U(\vec{x}-\vec{y}) \simeq V_{0}(\vec{x}) \delta(\vec{x}-\vec{y})+V_{1}(\vec{x}, \nabla) \delta(\vec{x}-\vec{y}) \cdots
$$

The potential is given as

$$
V(\vec{x})=E-\frac{1}{2 \mu} \frac{\nabla^{2} \Psi(\vec{x})}{\Psi(\vec{x})}
$$

This technique is widely applicable for hadronic systems

Potentials

Effective masses and eigen vectors

Eigen vectors of diagonalized correlator matrix

Error bar is basically given this much
Need more efficient way to calculate error bars.

