Glueballs in J/psi Radiative Decays

Ying Chen,

Institute of High Energy Physics,

Chinese Academy of Sciences, China
For
CLQCD Collaboration: L. -C. Gui, G. Li, C. Liu,
Y.-B. Liu, J.-P. Ma, J.-B. Zhang, Y.-J. Zhang

Lattice 2010, 2010. 06. 15

Outline

I. Motivation
II. The widths of J/psi radiatively decaying to glueballs
III. Numerical details
IV. Summary and concluding remarks

I. Introduction

- QCD predicts the existence of glueballs
- Quenched LQCD predicts glueball spectrum Lowest-lying glueballs have masses in the range $1 \sim 3 \mathrm{GeV}$
- Experimentally, fO(1370), fO(1500), fO(1710), etc., are glueball candidates, but decisive conclusion cannot be drawn.
- Due to its abundance of gluons, J/psi radiative decay can be the best hunting ground.
- BESIII in Beijing is producing $10^{10} \mathrm{~J} / \mathrm{psi}$

$J^{P C}$	mM_{6}	$\mathrm{Ma}_{6}(\mathrm{MeV})$
0^{+7}	4.16(11)(4)	1710(50) (80)
2^{++}	5.83(5)(6)	2390(30)(120)
0^{-+}	$6.25(6)(6)$	2560(35)(120)
	-2,	20eteve) (10)
2^{-1}	$7.42(7)(7)$	3040(40) (150)
3^{+-}	8.79(3)(9)	3600(40)(170)
3^{++}	8.94(6)(9)	3670(50) (180)
1^{--}	$9.34(4)(9)$	3830(40)(190)
2^{-}	$9.77(4)(10)$	4010(45) (200)
3^{-}	10.25(4))(10)	4200(45) (200)
2^{+-}	10.32(7)(10)	$4230(50)(200)$
0^{+-}	11.66 $(7)(12)$	4780(60)(230)

Y. Chen et al,

Phys. Rev. D 73, 014516 (2006) events

II. The widths of J/psi radiatively decaying to glueballs

(We focus on the scalar glueball in this talk)

- Method 1: Effect theory and dispersion relation (V.A. Novikov et al. . Nucl. Phys. B 165 (1980) 67.)

By the use of dispersion relation, we have,

$$
\Gamma\left(J / \psi \rightarrow \gamma 0^{++}\right)=\frac{\alpha^{3}}{\pi 5^{2} 3^{8} 2^{3}} \frac{m_{J / \aleph}^{4}\langle 0| \alpha_{s} G^{2}\left|0^{++}\right\rangle^{2}}{m_{c}^{4} \Gamma\left(J / \psi \rightarrow e^{+} e^{-}\right)} \longrightarrow \begin{aligned}
& \text { Glueball } \\
& \text { Matrix } \\
& \text { Element }
\end{aligned}
$$

- Method 2: Tree-level perturbative QCD

(a)

(b)

(c)

$$
\left\langle G_{\lambda_{2}} \gamma_{\lambda_{1}}\right| S\left|H_{\lambda}\right\rangle=(2 \pi)^{4} \delta^{4}\left(p_{H}-p_{r}-p_{G}\right) \frac{e}{\left(8 \omega_{\gamma} E_{G} E_{H}\right)^{1 / 2}} T_{\lambda_{1} \lambda_{2}}^{\lambda},
$$

$$
T_{\lambda_{1}, \lambda_{2}}^{\lambda}=\frac{e_{Q} g^{2}}{2 \sqrt{3}} \delta_{a b} e_{\mu}^{\lambda_{1} *}\left(p_{\gamma}\right) \int d^{4} x_{1} d^{4} x_{2} \times
$$

$$
\operatorname{Tr}\left[\chi_{\lambda}\left(x_{1}, x_{2}\right) \gamma^{\beta} S_{F}\left(x_{2}\right) \gamma^{\mu} S_{F}\left(-x_{1}\right) \gamma^{\alpha}\right.
$$

$$
+\chi_{\lambda}\left(x_{2}, 0\right) \gamma_{\mu} S_{F}\left(-x_{1}\right) \gamma^{\alpha} S_{F}\left(x_{1}-x_{2}\right) \gamma^{\beta}
$$

$$
\chi_{\lambda}\left(0, x_{1}\right) \gamma \gamma^{\alpha} S_{F}\left(x_{1}-x_{2}\right) \gamma^{\beta} S_{F}\left(x_{2}\right) \gamma^{\mu} G_{\alpha \beta}^{a b}\left(x_{1}, x_{2}\right)_{\lambda_{2}}
$$

J/psi BS wave func.
Glueball BS wave func.
$\left.\Gamma(J / \psi \rightarrow \gamma G)=|\psi(0)|^{2}|\langle 0| F F| G\right\rangle\left.\right|^{2} K_{G}\left(m_{c}, m_{G}, m_{J / \psi}\right)$
Can be calculated explicitly

- Glueball-to-vacuum matrix elements Lattice QCD results (quenched):
Y. Chen et al, (Phys. Rev. D 73, 014516 (2006))

$$
\begin{aligned}
s & =\langle 0| \operatorname{tr}\left(g^{2} G_{\mu \nu} G_{\mu \nu}\right)\left|0^{++}\right\rangle=15.6 \pm 3.2(\mathrm{GeV})^{3} \\
p & =\langle 0| \varepsilon_{\mu \nu \rho \sigma} \operatorname{tr}\left(g^{2} G_{\mu \nu} G_{\rho \sigma}\right)\left|0^{-+}\right\rangle=8.6 \pm 1.3(\mathrm{GeV})^{3} \\
t & =\varepsilon_{\mu \nu}\langle 0| \frac{1}{2} \Theta_{\mu \nu}\left|2^{++}\right\rangle=0.52 \pm 0.19(\mathrm{GeV})^{3},
\end{aligned}
$$

H.B. Meyer (arXiv:08083151 [hep-lat])

$$
\frac{s=11.5(1.1)(\mathrm{GeV})^{3}}{t=0.49(10)(\mathrm{GeV})^{3}}
$$

Other phenomenological results:
(a) QCD sum rules with non-perturbative topology effects:
(H. Forkel, hep-ph/0608071)

$$
s=20(2)(G e V)^{3}
$$

(b) Instanton liquid model:

$$
s=14(\mathrm{GeV})^{3}
$$

T. Schaafer and E.V. Shuryak, PRL75(1995)1707

- Predictions of J/psi radiatively decaying to glueballs

Method 1: two-photon-two-gluon induced H.B. Meyer, (arXiv:08083151 [hep-lat])

$$
\operatorname{Br}\left(J / \psi \rightarrow G_{0} \gamma\right) \approx 0.009
$$

Method 2: Tree-level perturbative QCD results with GME by QLQCD
(Y. Chen, G. Li, and Y.J. Zhang)

m_{e}	$J / \psi \rightarrow+7)^{++}$		$J / \psi+2^{++}$		$J / 4++0^{-+}$	
(GeV)	Width(GeV)	Br ratios	Width(GeV)	Br. ratios	Width(GeV)	Br. ratios
1.25	2.2×10^{-4}	24	1.5×10^{-7}	16×10^{-3}	2.6×10^{-5}	0.88
140	2.2×10^{-4}	2.4	9.0×10^{-8}	9.7×10^{-4}	5.5×10^{-6}	0.06
1.50	2.0×100^{-4}	2.2	6.9×10^{-8}	73×10^{-4}	2.4×10^{-6}	0.013

TABLEE:The decay widths and branch ratioo of $J / \psi \rightarrow \gamma G$ with G representing the $0^{0^{+}}, 2^{++}$, and $)^{-+}$glueballs.

- Method 3: Direct calculation in LQCD

The decay width of J/psi radiatively decaying to the scalar glueball can be derived from the formular

$$
\Gamma\left(J / \psi \rightarrow \gamma G_{0^{+}}\right)=\frac{4}{27} \alpha \frac{|p|}{M_{J / \psi}^{2}}\left|E_{1}(0)\right|^{2}
$$

where $E 1(0)$ is the on-shell form factor, which appears in the matrix elements (J.J. Dudek, hep-lat/0601137)

$$
\begin{aligned}
\left\langle S\left(\vec{p}_{s}\right)\right| j^{\mu}(0)\left|V\left(\vec{p}_{v}, r\right)\right\rangle= & \left(E_{1}\left(q^{2}\right)\left[\varepsilon^{\mu}\left(\vec{p}_{v}, r\right)-\varepsilon\left(\vec{p}_{v}, r\right) \cdot p_{s} \frac{p_{v}^{\mu} p_{v} \cdot p_{s}-m_{v}^{2} p_{s}^{\mu}}{\Omega\left(q^{2}\right)}\right]\right. \\
& \left.+\frac{C_{1}\left(q^{2}\right)}{\sqrt{q^{2}} \Omega\left(q^{2}\right)} m_{v} \varepsilon\left(\vec{p}_{v}, r\right) \cdot p_{s}\left[p_{v} \cdot p_{s}\left(p_{v}+p_{s}\right)^{\mu}-m_{s}^{2} p_{v}^{\mu}-m_{v}^{2} p_{s}^{\mu}\right]\right)
\end{aligned}
$$

With the vector current insertion $j^{\mu}=\bar{c} \gamma^{\mu} c$, these Matrix elements can be calculated through the three point function,

$$
\begin{aligned}
\Gamma^{(3)}\left(\vec{p}_{f}, \vec{q} ; t_{f}, t\right) & =-\sum_{\vec{x}, \vec{y}} e^{-i \vec{p}_{f} \cdot \vec{x}} e^{+i \vec{q} \cdot \vec{y}}\left\langle O_{S}\left(\vec{x}, t_{f}\right) j^{\mu}(\vec{y}, t) O_{V}^{\dagger}(0,0)\right\rangle \\
\quad\left(t_{f} \geq t \geq 0\right) &
\end{aligned}
$$

After the intermediate state insertion, the three-point function can be written as

$$
\begin{aligned}
& \Gamma^{(3), \mu j}\left(\vec{p}_{f}, \vec{q} ; t_{f}, t\right)=\sum_{f, i, r} \frac{e^{-E_{f}\left(t_{f}-t\right)} e^{-E_{i} t}}{2 E_{f}\left(\vec{p}_{f}\right) 2 E_{i}\left(\vec{p}_{i}\right)} \\
& \times\langle 0| O_{S}(0)\left|f\left(\vec{p}_{f}\right)\right\rangle\left\langle f\left(\vec{p}_{f}\right)\right| j^{\mu}(0)\left|i\left(\vec{p}_{i}, r\right)\right\rangle\left\langle i\left(\vec{p}_{i}, r\right)\right| O_{V}^{(j) \dagger}|0\rangle \\
&\langle 0| O_{V}^{\mu}|n(\vec{p}, r)\rangle \equiv Z_{n} \epsilon^{\mu}(\vec{p}, r) \\
& \sum \epsilon^{\mu}(\vec{p}, r) \epsilon^{\nu *}(\vec{p}, r)=-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{0} \quad \vec{p}_{i}=\vec{p}_{f}-\vec{q}
\end{aligned}
$$

Two-point function of vector meson

$$
\begin{aligned}
C_{2}^{i j}(\vec{p}, t) & =\sum_{\vec{x}} e^{-i \vec{p} \vec{x}}\langle 0| O_{V}^{(i)}(\vec{x}, t) O_{V}^{(j), \dagger}(\overrightarrow{(0)}, 0)|0\rangle \\
& =\sum_{n, r} \frac{1}{2 E_{n}(\vec{p})}\langle 0| O_{V}^{(i)}(0)|n(\vec{p}, r)\rangle\langle n(\vec{p}, r)| O_{V}^{(j), \dagger}(0)|0\rangle e^{-E_{n} t} \\
& =\sum_{n} \frac{Z_{n} Z_{n}^{*}}{2 E_{n}(\vec{p})}\left(\delta_{i j}+\frac{p^{j} p^{j}}{m_{n}^{2}}\right) e^{-E_{n} t}
\end{aligned}
$$

III. Numerical details

1. Lattice and parameters

Anisotropic lattice: $L^{3} \times T=8^{3} \times 96 \quad \xi=a_{s} / a_{t}=5$ Strong coupling: $\quad \beta=2.4 \quad a_{s}=0.222(2) f m$
2. Actions

$$
\begin{aligned}
S_{I A}= & \beta\left\{\frac{5}{3} \frac{\Omega_{s p}}{\xi u_{s}^{4}}+\frac{4}{3} \frac{\xi \Omega_{t p}}{u_{t}^{2} u_{s}^{2}}-\frac{1}{12} \frac{\Omega_{s r}}{\xi u_{s}^{6}}-\frac{1}{12} \frac{\xi \Omega_{s t r}^{4}}{u_{s}^{4} u_{t}^{2}}\right\} \\
\mathcal{A}_{x y}= & \delta_{x y}\left[1 /\left(2 \kappa_{\text {max }}\right)+\rho_{t} \sum_{i=1}^{\infty} \sigma_{0 i} \mathcal{F}_{0 i}+\rho_{s}\left(\sigma_{12} \mathcal{F}_{12}+\sigma_{23} \mathcal{F}_{23}+\sigma_{31} \mathcal{F}_{31}\right)\right] \\
& -\sum_{\mu} \eta_{\mu}\left[\left(1-\gamma_{\mu}\right) U_{\mu}(x) \delta_{x+\mu, y}+\left(1+\gamma_{\mu}\right) U_{\mu}^{+}(x-\mu) \delta_{x-\mu, y]}\right] \\
\eta_{i}= & \nu \gamma\left(2 u_{s}\right), \eta_{0}=\xi / 2, \sigma=1 /(2 \kappa)-1 /\left(2 \kappa_{\text {max }}\right), \\
& \rho_{t}=c_{S W}(1+\xi) /\left(4 u_{s}^{2}\right), \rho_{s}=c_{S W} /\left(2 u_{s}^{4}\right) .
\end{aligned}
$$

Self consistent check of the speed of light for J/psi

$$
c^{2}=\frac{E^{2}(\vec{p})-m^{2}}{p^{2}}
$$

3. Configurations and quark propagators

In order to get fair signals of the three point functions, a large enough statistics is required.

- 5000 gauge configurations, separated by 100 HB sweeps
- Charm quark mass is set by the physical mass of $\mathrm{J} / \mathrm{psi}$
- On each configuration, 96 charm quark propagators are calculated with point sources on all the 96 time slices. The periodic boundary conditions are used both for the spatial and temporal directions.

$$
\Gamma^{(3) \mu i}\left(\vec{p}_{f}, \vec{q} ; t_{f}, t\right)=\frac{1}{T} \sum_{\tau=0}^{T-1} \sum_{\vec{y}} e^{+i \vec{q} \cdot \vec{y}}\left\langle O_{G}\left(\vec{p}_{f}, t_{f}+\tau\right) j^{\mu}(\vec{y}, t+\tau) O_{J / \psi}^{i,+}(\tau)\right\rangle
$$

4. The glueball operators

Building prototypes (various Wilson loops)

Smearing: Single link scheme (APE) and double link scheme (fuzzying)
The essence of the VM is to find a set of combinational

$$
\begin{aligned}
& \tilde{C}\left(t_{D}\right) \mathbf{v}^{(R)}=e^{-t_{D} \tilde{m}\left(t_{D}\right)} \tilde{C}(0) \mathbf{v}^{(R)} \\
& \tilde{C}_{\alpha \beta}(t)=\sum_{\tau}\langle 0| \phi_{\alpha}(t+\tau) \phi_{\beta}(\tau)|0\rangle
\end{aligned}
$$ coefficients

$$
\left\{v_{\alpha}, \alpha=1,2, \ldots 24\right\}
$$

such that the operator

$$
\Phi=\sum_{\alpha} v_{\alpha} \phi_{\alpha} .
$$

couples mostly to a specific state.

The energies of 27 momentum modes of scalar glueballs are calculated. Plotted are the plateaus using the optimized operators

The horizontal line is the theoretical prediction with $\quad \xi=5$
It is seen that the deviations are less than 5\%
5. Three point functions

$$
\begin{aligned}
\Gamma^{(3), \mu j}\left(\vec{p}_{f}, \vec{q} ; t_{f}, t\right) & =\sum_{f, i, r} \frac{e^{-E_{f}\left(t_{f}-t\right)} e^{-E_{i} t}}{2 E_{f}\left(\vec{p}_{f}\right) 2 E_{i}\left(\vec{p}_{i}\right)} \quad \vec{p}_{i}=\vec{p}_{f}-\vec{q} . \\
& \times\langle 0| O_{S}(0)\left|f\left(\vec{p}_{f}\right)\right\rangle\left\langle f\left(\vec{p}_{f}\right)\right| j^{\mu}(0)\left|i\left(\vec{p}_{i}, r\right)\right\rangle\left\langle i\left(\vec{p}_{i}, r\right)\right| O_{V}^{(j) \dagger}|0\rangle
\end{aligned}
$$

Temporarily, we only analyze the following cases:

$$
\left\{\begin{array}{l}
\vec{p}_{i}=(0,0,0) \\
\mu=i=1,2,3
\end{array} \quad Q^{2}=-\left(p_{f}=\vec{q}=(000),(100), \cdots,(222), p_{i}\right)^{2}=\vec{p}_{f}^{2}-\left(M_{i}-E_{f}\right)^{2}\right.
$$

The plots for the ratios
 $\Gamma^{(3)}(t, 40,0) / C_{2}(40)$

Exponential fit by taking the glueball energies as known parameters

$$
\frac{\Gamma^{(3), i i}\left(\vec{p}_{f} ; t, t\right)}{C_{2}^{i i}\left(\vec{p}_{i}=0 ; t\right)} \equiv \alpha^{i i}\left(M_{f}, \vec{p}_{f}, M_{i}\right) E_{1}\left(Q^{2}, t\right)+\beta^{i i}\left(M_{f}, \vec{p}_{f}, M_{i}\right) C_{1}{ }^{\prime}\left(Q^{2}, t\right)
$$

These are known functions

6. The form factor and the decay width

Polynomial fit:

$$
\begin{aligned}
& E_{1}\left(Q^{2}\right)=E_{1}(0)+a Q^{2}+b Q^{4} \\
& E_{1}(0)=0.0145(13) G e V
\end{aligned}
$$

The branch ratio is

$$
\begin{aligned}
& \Gamma\left(J / \psi \rightarrow \gamma G_{0^{+}}\right)=\frac{4}{27} \alpha \frac{|p|}{M_{J / \psi}^{2}}\left|E_{1}(0)\right|^{2}=0.030(5) \mathrm{keV} \\
& \frac{\Gamma}{\Gamma_{\text {tot }}}=0.030(5) / 93.2=3.2(5) \times 10^{-4}
\end{aligned}
$$

Experimental results for J/psi radiatively decaying to scalars
C. Amsler et al., Phy. Lett. B667, 1 (2008)

Decay modes	Branch ratio $\left(\Gamma_{i} / \Gamma\right)$
$J / \psi \rightarrow \gamma f_{0}(1710) \rightarrow \gamma K \bar{K}$	$\left(8.5_{-0.9}^{+1.2}\right) \times 10^{-4}$
$J / \psi \rightarrow \gamma f_{0}(1710) \rightarrow \gamma \pi \pi$	$(4.0 \pm 1.0) \times 10^{-4}$
$J / \psi \rightarrow \gamma f_{0}(1710) \rightarrow \gamma \omega \omega$	$(3.1 \pm 1.0) \times 10^{-4}$
$J / \psi \rightarrow \gamma f_{0}(1500)$	$>(5.7 \pm 0.8) \times 10^{-4}$
$J / \psi \rightarrow \gamma f_{0}(1370)$	\mathbf{N} / \mathbf{A}

7. The systematic uncertainties

- The continuum extrapolation has not been carried out. (The same calculation on a finer lattice is undergoing.)

- The lattice vector current has not been renormalized. (We are working on it.)
- The uncertainty owing to the quenched approximation. (Cannot be resolved in the near future.)

IV. Summary and concluding remarks

- For the first time, the form factors relevant to the $\mathrm{J} / \mathrm{psi}$ radiatively decaying to glueballs are calculated in the quenched lattice QCD.
- With these form factors, the decay widths can be predicted more reliably. We obtain a raw estimation of the branch ratio $\Gamma\left(J / \psi \rightarrow \gamma G_{0^{+}}\right) / \Gamma_{\text {tot }}=3.2(5) \times 10^{-4} \quad$ We are also working on other channels, such as tensor and pseudoscalar.
- Some of the systematic uncertainties will be addressed in the future work.

Thank You!

