SU(3) Deconfinement in 2+1d from Twisted Boundary Conditions and Self-Duality

Nils Strodthoff

Darmstadt University of Technology, Germany

Lattice 2010 Villasimius, Sardinia, Italy June 15, 2010

based on work together with Sam Edwards and Lorenz von Smekal

1 Twisted Boundary Conditions and Center Vortices

- 2 Universality and Self-Duality
- 3 Results: SU(3) Deconfinement
- 4 Results: SU(4) Deconfinement
- 5 Summary and Conclusions

't Hooft's Twisted Boundary Conditions

Twisted boundary conditions in pure SU(N) gauge theory: ['t Hooft 1979]

- pure gauge: gauge fields represent the center (\mathbb{Z}_N for SU(N)) trivially
- boundary conditions for the gauge fields in a finite box: fixed up to center elements
- N³ gauge-inequivalent choices (in 2+1 dimensions)
 ⇒'t Hooft's twisted boundary conditions
- at finite T distinguish:
 - temporal twists classified by $ec{k} \in \mathbb{Z}_N^2$
 - magnetic twists (purely spatial) classified by $m \in \mathbb{Z}_N$
 - *m* is the gauge invariant magnetic flux (set m = 0 in the following).

Vortex free energy (per T) F_k :

$$\frac{Z_k(\vec{k})}{Z_k(\vec{0})} \equiv e^{-F_k(\vec{k})}$$

Implementing 't Hooft's twisted boundary conditions on the lattice:

- Multiply one link in each slice by center element *z*.
- Equivalently, keep periodic boundary conditions but modify action: $\beta \rightarrow z\beta$ for a stack of plaquettes perpendicular to plane of twist

 \Rightarrow enforce non-vanishing center flux

Electric Flux Partition Functions

• \mathbb{Z}_N Fourier transform of $Z_k(\vec{k})$: electric flux partition function

$$Z_e(\vec{e}) = \frac{1}{N^2} \sum_{\vec{k}} e^{-2\pi \mathrm{i} \vec{e} \cdot \vec{k}/N} Z_k(\vec{k})$$

• $\vec{e} \in \mathbb{Z}_N^2$ is gauge invariant electrical flux in \vec{e} direction Electric flux free energy (per T) F_e :

$$rac{Z_e(ec{e})}{Z_e(ec{0})}\equiv e^{-F_e(ec{e})}$$

Interpretation: [de Forcrand, von Smekal 2002]

$$\langle \mathcal{P}(\vec{x})\mathcal{P}(\vec{x}+L\vec{e})
angle_{\mathsf{no-flux}}=e^{-F_e(\vec{e},T,L)}$$

 F_e : free energy of fundamental static charge with mirror (anti)charges in the adjacent volume

Nils Strodthoff (TU Darmstadt)

[Greensite 2003]

Intuitive picture:

 Low T: vortices spread to lower their free energy, disorder temporal Wilson loops

• High T: vortices squeezed

Order parameters for the deconfinement transition:

- center vortex free energy F_k ~ σ̃L^{d-1}, dual string tension: σ̃ > 0 for T > T_c
- dual order parameter: electric flux free energy F_e ~ σL/T, string tension: σ > 0 for T < T_c

Svetitsky, Yaffe 1982

d+1 dimensional gauge theory with 2nd order deconfinement transition

same universal properties

d dimensional spin model with the same (center) symmetry

Correspondence here:

2+1d SU(3) gauge theory \longleftrightarrow 2d 3-state Potts model Polyakov loop correlators \longleftrightarrow spin correlators center vortices \longleftrightarrow spin interfaces free energy $F_k \sim \tilde{\sigma}L \longleftrightarrow$ free energy $F_l \sim \sigma_l L$ dual string tension $\tilde{\sigma} \longleftrightarrow$ interface tension σ_l

 \Rightarrow well-studied spin models with many exact results available: critical exponents, interface tensions,...

Deconfinement phase transitions in (d + 1)d pure SU(N) gauge theories

	N=2	N=3	N=4
d=3	2nd order	1st order	1st order
d=2	2nd order	2nd order	1st order?

Review: Deconfinement phase transition in 2+1d SU(N) gauge theory $\mbox{ [Liddle, Teper 2008]}$

Deconfinement phase transitions in (d + 1)d pure SU(N) gauge theories

	N=2	N=3	N=4
d=3	2nd order	1st order	1st order
	3d Ising model	-	-
d=2	2nd order	2nd order	1st order?
	2d Ising model	2d 3-state Potts model	2d 4-state Potts?

Review: Deconfinement phase transition in 2+1d SU(N) gauge theory $\mbox{ [Liddle, Teper 2008]}$

Kramers-Wannier Duality and Self-Duality

[Kramers, Wannier 1941] [Savit 1980]

- 2d Ising model \leftrightarrow 2d Ising model (self-dual) with $\beta \sim \tilde{\beta} = -\frac{1}{2} \ln \tanh \beta$, $\beta = J/kT$
- 2d 3-state Potts model \leftrightarrow 2d 3-state Potts model (self-dual) 3d Ising model \longleftrightarrow 3d \mathbb{Z}_2 gauge theory

Generalization: Finite torus

- partition functions with different boundary conditions mix
- e.g. self-duality relation for the Ising model $(N_s \times N_s, \text{ square})$:

 similar relation for all q-state Potts models [Strodthoff, Edwards, von Smekal in prep.]

10 / 18

Checking Self-Duality in SU(3)

• Check self-duality: $\frac{Z_{k,tw}(x)}{Z_{k,0}(x)} \stackrel{?}{=} \frac{Z_{e,tw}(-x)}{Z_{e,0}(-x)}$ with finite-size scaling (FSS) variable $x = \pm T_c L (\pm t)^{\nu} \propto L/\xi^{\pm}$

Critical Couplings: Intersection with the Universal Value

1st method: [Edwards, von Smekal 2009]

- Intersect $\frac{Z_{k,tw}}{Z_{k,0}}$ with universal value [Park, den Nijs 1988] \Rightarrow extract pseudo-critical couplings $\beta_c(N_s, N_t)$
- From the FSS ansatz

$$\frac{Z_{k,tw}}{Z_{k,0}} = Z_{\text{univ}} + b\left(\beta_c(N_s, N_t) - \beta_{c,\infty}(N_t)\right) N_s^{1/\nu} + c N_s^{-\nu}$$

$$\beta_c(N_s, N_t) = \beta_{c,\infty}(N_t) - d(N_t) N_s^{-(\omega+1/\nu)}$$

• Determine $\beta_{c,\infty}(N_t)$ by extrapolation

. . .

Critical Couplings: Exploiting Self-Duality

2nd method: [Strodthoff, Edwards, von Smekal in prep.]

• Determine $\beta_{c,\infty}$ by intersecting Z_e and Z_k

Advantages:

- Conceptually: leading corrections to FSS cancel \Rightarrow obtain $\beta_{c,\infty}$ in small volumes
- Numerically: faster convergence

Nils Strodthoff (TU Darmstadt)

Speed of Convergence and Results

Speed of convergence:

Critical couplings and critical temperature:

N _t	β_{c}	Lit.
2	8.15309(11)	$8.1489(31)^{\dagger}$
4	14.7262(9)	$14.717(17)^{\dagger}$
6	21.357(25)	21.34(4) ‡
8	27.84(12)	-
+	+	

[Liddle, Teper 2008] [‡] [Engels et al. 1997]

 $\Rightarrow \frac{T_c}{g_3^2} = 0.5475(3); \ \frac{T_c}{\sqrt{\sigma}} = 0.9938(9)$ (using literature values for $g^2/\sqrt{\sigma}$)
Literature value: $\frac{T_c}{\sqrt{\sigma}} = 0.9994(40)$ [Liddle, Teper 2008]

Nils Strodthoff (TU Darmstadt)

Correlation Length Critical Exponent ν from FSS

• For
$$\beta \sim \beta_c$$
: $F_k(\beta) = c + d(\beta - \beta_c) + \dots$

• F_k is a universal function of the FSS variable $x = N_s t^{\nu}$

•
$$(\beta - \beta_c) \sim x^{1/\nu} N_s^{-1/\nu} \Rightarrow d(N_s) \sim N_s^{1/\nu}$$

• Result e.g. for $N_t = 2$: $\nu = 0.818(25)(20)$ compared to $\nu = 5/6 \approx 0.8333$ for the 2d 3-state Potts model

Consider SU(4) in 2+1d:

- SU(4) in 2+1d: order of the phase transition is not entirely clear although there is strong evidence for a first order transition
 [de Forcrand, Jahn 2003] [Liddle, Teper 2008] [Holland, Pepe, Wiese 2008]
- If it was 2nd order which of the Ashkin-Teller models? (likely Potts model c.f. [de Forcrand, Jahn 2003])
- Apply our methods to SU(4) to see what happens...

(Preliminary) Results for SU(4)

- Critical exponent ($N_t = 4$): $\nu = 0.673(9)$ compared to $\nu = 2/3$ for the 4-state Potts model
- Critical couplings from intersecting with universal value for 4-state Potts model?

N _t	$\beta_{c,\infty}$?	Lit.				
2	14.86(2)	14.8403(26) [†]				
4	26.29(2)	26.251(16) [‡]				
		26.228(75) [†]				
† [Liddle, Teper 2008] [‡] [Holland, Pepe, Wiese 2008]						
Does $\frac{Z_{k,tw}}{Z_{k,0}}(\beta_{Lit})$ converge the						
universal value?						

Summary and Conclusions

- Studied deconfinement transition in pure SU(3) and SU(4) lattice gauge theory in 2+1 dimensions
- Using 't Hooft's twisted boundary conditions measured vortex free energy as an order parameter for the deconfinement transition
- Verified self-duality in SU(3) numerically
- Determined critical couplings $\beta_{c,\infty}$, critical temperature $\frac{T_c}{\sqrt{\sigma}}$ and the critical exponent ν with very high precision
- Presented preliminary results for SU(4)

Thank you for your attention!