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Numerical Stochastic Perturbation Theory

Stochastic Quantization

alternative way of calculating expectation values in Euclidian FT
Parisi, Wu (1981)

@ additional, fictitious time coordinate 7:

p(x) — o(x,7)
© Langevin equation
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© expectation values via

ol :Tlggo—/ dT/D 04



Hunting for the self-energy renormalon with NSPT

Numerical Stochastic Perturbation Theory

Stochastic Quantization

alternative way of calculating expectation values in Euclidian FT
Parisi, Wu (1981)

© additional, fictitious time coordinate 7:

P(x) — ¢(x, 7)
© Langevin equation
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Numerical Stochastic Perturbation Theory

Numerical Stochastic Perturbation Theory (NSPT)

Stochastic Quantization implemented numerically for Lattice Gauge
Theory

© Langevin equation for Gauge fields:

8 - a, a

EUM(IL‘,T) = —q (VI,MSQL[U] + ¢ nu(x,T)) Up(z,T)
© Gauge fields as perturbative expansion

g0

U=144830043"10@ .. 455y, g3 o

— calculation cost oc M?
— NSPT cheaper than diagrammatic LPT at high orders M
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Numerical Stochastic Perturbation Theory

Numerical Stochastic Perturbation Theory (NSPT)

Stochastic Quantization implemented numerically for Lattice Gauge
Theory

© Langevin equation for Gauge fields:

8 - a, a

EUM(IL‘,T) =4 (VI,MSQL[U] +t nu(x,T)) Up(z,T)
© Gauge fields as perturbative expansion

U=145 30048 0@ 4. 43 ¥y, g3 = ;”;V

— calculation cost oc M?
— NSPT cheaper than diagrammatic LPT at high orders M

© Technicality 1: Stochastic Gauge Fixing

© Technicality 2: zero mode treatment
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Renormalons

perturbation theory: generic observable R as series
R= Z cpa
n

coefficients ¢,, grow fast:

n—oo
cn "R Kan!nb

— perturbative expansion does not converge,
at best it is an asymptotic series

Renormalons

@ certain pattern of factorial growth of ¢,
@ e.g. arise when inserting “bubble” chains in Feynman diagrams

@ small and large momentum behaviour origin:
UV and IR renormalons
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tool: summation via Borel transform and Borel integral

oo

[o.¢] tn
R~ Zrnanﬂ = BIR|(t) = Zrn o
n=0 n=0 ’
R= / dt eV B[R](t)
0

— behaviour of perturbative expansion R dictated by:
the closest singularity
u=—tf

to the origin of its Borel transform
— leading renormalon
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First observable: The plaquette

1 2
(P)=(—gtrlUp) =) cna"+g—6 Coc(a)al (%GG>1att+ 0(a®)

@ contains gluon condensate (G, G*)
@ leading IR renormalon at u = 2

— calculate plaquette to high orders with NSPT
— early works with NSPT, e.g.

@ Di Renzo et al. hep-th/9502095, 8 loops,
@ Di Renzo et al. hep-lat/0011067, 10 loops,
@ Rakow hep-lat/0510046, 16 loops
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at leading order:

[o¢]
notation : E rpa

n=0

. T 11
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second observable:

Polyakov Loop

La—1
1 4

P(#) = 3 Tx I] vz 1)

7=0
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second observable:

Polyakov Loop

1 Li—1
P(Z) = 3 Tr T];[O Uy(Z,7)

gives access to static quark self energy Viqis:

1
Vielf = lim <_L_ In (77>> ,

Ly—o0 4

Veelt = E Self a
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Renormalons

@ Vi of an infinitely heavy quark is linearly UV divergent

@ leading UV Renormalon appears already at u = 1/2

— renormalon should emerge four times faster as for plaquette
— at leading order

[o¢]
notation : E rpa/ L
n=0

LOV = lim In =4 LOPlaq

n—oo T‘n_l
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Renormalons

Periodic boundary conditions (PBC): zero momentum modes
appear
— NSPT treatment: subtract them after each update
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Periodic boundary conditions (PBC): zero momentum modes
appear
— NSPT treatment: subtract them after each update

Twisted Boundary Conditions

Uu(z+ L) = Q,U,(2)Q},

@ at least two directions must be twisted

@ constant twist matrices 2, yield
0.0, =n0Q,, neZ(N)

for instance 1 = €%™/3 for SU(3)

@ 2 options for implementation: either explicit choice of 2,
or phase factors for certain plaquettes at corners of twisted
planes
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Effects of Twisted Boundary Conditions:
© elimination of zero modes — no subtraction needed

© momenta k, in twisted directions quantized as if the SU (V)
gauge fields lived on a lattice of size L x NV instead of L:

2T

N V= twisted direction,
k, =

27 C e .
T, V= periodic direction.

— reduction of finite size effects
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from Trottier et al. hep-lat/0110051:
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Lastly: with little additional expense, calculate static self energy in
octet representation:

(n)
VO,self = Z VO,selfan

Known so far (e.g. Bali, Pineda (hep-ph/0310130):
@ renormalon structure is equal to the singlet case
@ Casimir Scaling

for n = 1,2 exact and approximately for n = 3:

(n)

Vosar _ Ca _ 5 95
i o

recently: Anzai et al. arXiv:1004.1562v1 [hep-ph]:
also n = 3 exact, at n = 4 first violation
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Renormalons
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Summary

@ NSPT is a powerful tool for high-order calculations
— renormalon physics

@ V.t renormalon should emerge a lot earlier than the usual
candidate from the gluon condensate

o Vqr severely affected by finite size effects when using periodic
boundary conditions

@ twisted boundary conditions clearly reduce finite size effects:
distinct ratio curves at moderate lattices

o further simulations on larger lattice volumes needed to decide
on renormalon existence

@ preliminary data suggest that the relation
V(Sils)elf / ‘/sgllf) = CA/ CF
is approximately valid well beyond n =3
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