Lattice study of transport coefficients in second order dissipative hydrodynamics

Lattice 2010 @ Cagliari, Italy Jun. 18. 2010

<u>Yasuhiro Kohno¹</u>

Masayuki Asakawa¹, Masakiyo Kiatazawa¹, Chiho Nonaka² ¹Osaka University, ²Nagoya University

Background

• Success of ideal hydrodynamic model

RHIC Scientists Serve Up "Perfect" Liquid New state of matter more remarkable than predicted -- raising many new questions April 18,2005

New matter (Quark-Gluon Plasma, QGP?) produced @ RHIC behaves like ideal fluid near critical point.

Take account of effects of the viscosities to hydrodynamics for more quantitative discussion of heavy ion collisions.

⇒We adopted second order dissipative (viscous) hydrodynamics by Israel-Stewart.

• Basic equations & 2nd law of thermodynamics

• Generalized off-equilibrium entropy current

• 1st order theory (by Eckart, Landau-Lifshitz)

• 2nd order theory (by Israel-Stewart)

$$T\partial_{\mu}S^{\mu} = \Pi X - q^{\mu}X_{\mu} + \pi^{\mu\nu}X_{\mu\nu} + T\partial_{\mu}Q^{\mu} \ge 0$$

$$Q^{\mu} = -\frac{u^{\mu}}{2T} \underline{\beta}_2 \pi_{ij} \pi^{ij} = -\frac{u^{\mu}}{2T} \frac{\tau_{\pi}}{2\eta} \pi_{ij} \pi^{ij}$$

 τ_{π} : relaxation time , η: shear viscosity

Perform the same procedure as in 1st order theory.

only shear part

for simplicity

Eqs. of motion become causal ones, but new transport coefficients (or phenomenological parameter) appear.

W.Israel and J.M.Stewart, Ann. Phys. (N.Y.) 118, 341(1979)

Purpose of our study

These new transport coefficients can not be determined by hydrodynamics.

⇒Microscopic theory determine them.

To evaluate the 2nd order transport coefficients by lattice QCD.

$$\beta_0 = \frac{\tau_{\Pi}}{\zeta}, \ \beta_1 = \frac{\tau_q}{\lambda T}, \ \beta_2 = \frac{\tau_{\pi}}{2\eta}$$

 β_0 :bulk viscous part β_1 :heat conductive part β_2 :shear viscous part

***** Focus on only β_2 in following discussion.

See also, Y. Maezawa et. al. (Poster)

Idea

• Boltzmann-Einstein (BE) principle

Probability that a state variable x takes a value A in equilibrium is given by

$$P(x = A) = \frac{W(A)}{\sum_{x} W(x)} \propto \exp[S(A)]^{2} \overset{\text{c.f. } S = \log W}{\underset{\text{microscopic states}}{\text{c.f. } S = \log W}}$$

• Applying the entropy of 2nd order theory to BE principle,

$$P(\pi_{ij}) \propto W(\pi_{ij}) \propto \exp[-\frac{V}{2T}\beta_2 \pi_{ij}^2]$$

A. Muronga, Eur. Phys. J. ST 155:107-113(2008) S. Pratt, Phys. Rev. C**77**, 024910(2008)

<u>Idea</u>

• Gaussian form

$$P(\pi_{ij}) \approx \exp[-\frac{V}{2T}\beta_2 \pi_{ij}^2]$$

 β_2 is related with the fluctuation of π_{ii} .

$$<\pi_{ij}^{2}>=\frac{T}{V\beta_{2}}$$
 $\ll \pi_{ij}>=0$

• In local rest frame,

$$\pi_{ij} = \frac{1}{V} \int dV T_{ij}$$

 $\begin{aligned} & \hbox{Measurement of the statistical average} < \pi_{ij}^{2} > \text{ on the} \\ & \text{lattice gives } \beta_{2} \\ & \hbox{\times} < \pi_{ij}^{2} > \text{ is UV divergence. We subtract T=0 contribution.} \end{aligned}$

Numerical Setup

- SU(3) pure gauge (Wilson action)
- 1HB + 4OR for each update
- Clover type plaquette for T_{ii}
- Isotropic lattice
- Lattice size

 β =6.000(a=0.094fm): 16³ × 4, 6, 8, 16 β =6.000(a=0.094fm): 32³ × 4, 6, 8, 16

- β =6.499(a=0.049fm): 32³ × 6, 8, 14, 18, 32
- $N_{conf.} = 300,000 \sim 500,000$
- Error estimate by jackknife (binsize=50)

- $\beta = 6.0 : \langle \pi_{ii}^2 \rangle$ becomes negative (no V dependence).
- $\beta = 6.499$: consistent with 0 within statistics.

Order Estimation of relaxation time

• The lower limit of τ_{Π} can be estimated from the upper limit of $<\pi_{\rm ij}^2>$

$$\begin{aligned} \frac{V}{T < \pi_{ij}^2 >^{up}} &= \beta_2^{low} = \frac{\tau_\pi^{low}}{2\eta} \Leftrightarrow \tau_\pi^{low} = 2\eta \beta_2^{low} \\ &= 2(\frac{\eta}{s})(\beta_2 T_C^{-4})^{low} \frac{s}{T_C^4} = 2(\frac{\eta}{s})(\beta_2 T_C^{-4})^{low} \frac{\alpha T^3}{T_C^4} \\ &= s = \alpha T^3 \end{aligned}$$

60 b6000x016 For example, b6000x032 40 b6499x032 $\eta / s = 1/4 \pi$, ($\beta_2 T_c^4$)⁻¹=O(1), 20 $(\beta_2 T_c^{4})^{-1}$ $\alpha = O(1)$, T=600MeV, 0 -20 -40 $\tau_{\pi}^{low} \cong O(10^{-1}) \mathrm{fm}$ -60 2 0 1 T/T_{c}

3

Summary & Future Work

- Summary
- 1. We evaluated one of the 2nd order transport coefficient i.e. β_2 by lattice QCD with Boltzmann-Einstein principle.
- 2. The fluctuation becomes negative.
- 3. For β =6.499, the errorbars of $\langle \pi_{ij}^2 \rangle$ are consistent with τ_{Π} which is considerably shorter than RHIC time scale.
- Future Work
- 1. Resolve the origin of negative $\langle \pi_{ij}^2 \rangle$.
- 2. Other transport coefficients $\beta_0 \& \beta_{1.}$

Appendix

Estimation of causality

• Signal velocity in matter is given by

$$v^{2} = \frac{1}{2\beta_{2}(e+p)} = \frac{T_{c}^{4}}{2(\beta_{2}T_{c}^{4}) \cdot \alpha T^{4}}$$
(e+p)=\alpha T^{4}

If you choose ($\beta_2 T_c^4$)⁻¹=10, α =5, T=400MeV,

60

• T_{ij} on the lattice (clover type) $T_{ij}^{lat.} \sim tr$ $T_{ij}^{lat.} \sim tr$

1st order dissipative hydrodynamics

 1st order theories for dissipative fluid (by Eckart or Landau– Lifshitz) ⇒Introduce dissipative effects linearly

entropy current

dissipative term $(q^{\mu}:$ heat flux)

$$S^{\mu} = su^{\mu} + \frac{1}{T}q^{\mu}$$

s : entropy density , u^{μ} : 4-velocity , *T* : temperature Transport equation \Rightarrow Causality \times

Transport coefficients : ζ (bulk viscosity), κ (heat conductivity), η (shear viscosity)

> C. Eckart, Phys. Rev. **58**, 919 (1940) L. D. Landau and E. M. Lifshitz, *Fluid Mechanics* (1959)

<u>2nd order dissipative hydrodynamics</u>

 2nd order theory for dissipative fluid (by Muller or Israel-Stewart) ⇒1st order theory + relaxation times

entropy current

$$\begin{split} S^{\mu} &= su^{\mu} + \frac{1}{T}q^{\mu} - \frac{1}{T}(\alpha_{0}q^{\mu}\Pi - \alpha_{1}q_{\nu}\pi^{\mu\nu}) \\ &\quad -\frac{1}{2T}u^{\mu}(\beta_{0}\Pi^{2} - \beta_{1}q^{\nu}q_{\nu} + \beta_{2}\pi^{\nu\lambda}\pi_{\nu\lambda}) \end{split} \qquad \text{dissipative terms} \\ \tau_{\Pi} &= \xi\beta_{0}, \ \tau_{q} = \kappa T\beta_{1}, \ \tau_{\pi} = 2\eta\beta_{2} \end{split}$$

 2^{nd} order theory $\rightarrow 1^{st}$ order theory ($\tau_i \rightarrow 0$,)

Transport equations \Rightarrow Causality \bigcirc

Transport coefficients : ζ , κ , η , α_0 , α_1 , β_0 , β_1 , β_2

I.Muller, Z. Phys. **198**, 329 (1967) W.Israel and J.M.Stewart, Ann. Phys. (N.Y.) **118**, 341 (1979)

Previous Work

• Using Kubo formula with ansatz for spectral function. But the validity remains questionable.

• Spatial correlation of T_{ii}

- Distribution of T_{ij}
 - SU(3) pure gauge theory
 Isotropic lattice
 4 x 10,000 configurations for each case

• Temperature dependence of T_{ij}

