Wilson Fermions with Brillouin Improvement

Stephan Dürr^{1,2} and Giannis Koutsou^{1,2}

¹Jülich Supercomputing Center Forschungszentrum Jülich Germany

²Bergische Universität Wuppertal Germany

Lattice 2010, June 15th

(ロト 4 回 ト 4 三 ト 4 三 ト 三 の ()

Outline

- Motivation
- Stencils and Improvement
 - Laplacian operator
 - Dirac operator
- Eigenvalue spectra
- Tests in quenched QCD
 - Computational cost
 - Physical observables

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ④ ヘ ⊙

• Summary / Outlook

Motivation

$$D(x,y) = \sum_{\mu} \gamma_{\mu} \nabla_{\mu}(x,y) - \frac{1}{2}\Delta(x,y) + m_0$$

Can one do better in discretizing the first-derivative and Laplacian terms?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへで

- Perfect Actions (Hasenfratz, Niedermayer, etc.)
 - Very expensive computationally
- Truncation (Gattringer, etc.)
 - Tunable parameters for each β , κ etc.
- Our approach
 - Consider effect on rotational symmetry
 - Consider EV spectrum

2D Case - Laplacian

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Combine in the form: $\alpha \Delta_s + (1 - \alpha) \Delta_t$

2D Case - Laplacian

2D Case - First derivative

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - の々ぐ

Operator combinations [U(1), 16×16, $\beta = 4.4$, $c_{sw} = 1$]

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ● ●

Operator combinations [U(1), 16×16, $\beta = 4.4$, $c_{sw} = 1$]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Operator combinations [U(1), 16×16, $\beta = 4.4$, $c_{sw} = 1$]

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ● ●

Operator combinations [U(1), 16×16, $\beta = 4.4$, $c_{sw} = 1$]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 のへで

Operator combinations [U(1), 16×16, $\beta = 4.4$, $c_{sw} = 1$]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Brillouin Laplacian, Isotropic derivative

- Smaller condition number (especially as Overlap kernel)
- Smaller additive quark mass renormalization \Rightarrow better chirality

シック・ボート (中下・日本)

- Expect less rotational symmetry violation
- · Good candidate for Overlap kernel

Practical tests in quenched QCD - Setup

size	β	a (fm)	a ⁻¹ (GeV)
$10^{3} \times 20$	5.72	0.160	1.236
$12^{3} \times 24$	5.80	0.133	1.479
$16^{3} \times 32$	5.95	0.100	1.978
$20^{3} \times 40$	6.08	0.080	2.463
$24^3 \times 48$	6.20	0.067	2.964

- Constant box size $L \simeq 1.6$ fm
- One iteration of APE smearing $\alpha = 0.72$
- $c_{SW} = 1$ throughout
- Targets: $r_0 M_{ud}^{PS} = 1.25$, $r_0 M_{s\bar{s}}^{PS} = 2.136$ and $r_0 M_{c\bar{c}}^{PS} = 6.812$ ($M_{\pi} = 500$ MeV & $M_K = 700$ MeV)

Tuning for $\kappa_{\rm crit}$

• Linear extrapolation in the range $(r_0 M_{\rm PS})^2 \in [1.25^2, 2.136^2]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• Also done for charm quark

Determining target κ

- Rational Ansatz: $-am_{\text{crit}} = \frac{c_1g_0^2 + c_2g_0^4}{1 + c_3g_0^2}$
- $c_1 = S/(12\pi^2)$, S available for standard Wilson case

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ④ ヘ ⊙

• Interpolate for κ_{light} and κ_{strange}

Pseudoscalar masses

Consistent masses for all spacings

Inversion Convergence

- \sim 1.7 less iterations for improved op
- Approx. same width
- Improved operator inversion ~ 10 times more expensive (unoptimized code)

Nucleon and Ξ

• No visible difference for these observables

Decay constant ratios

- Ratios of decay constants to eliminate Z_A
- Hint of larger scaling region for heavy quarks

Summary / Outlook

Summary / Conclusions

- Extended Laplacian and first-derivative operators with no tunable parameters
- Observed reduction of condition number for plain operator
- Carefully tuned $\kappa_{\rm crit}$ for various lattice spacings
- Extended scaling region for some observables? Further analysis required

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Further investigation

- Suitability for Charm physics
- Properties as Overlap kernel

Correlator distribution

Pseudoscalar correlator at given time - slice

• No significant difference between distributions

Tuning κ_{charm}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Interpolating for $f_{c\bar{c}}$

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - の々ぐ