$2+1$ flavor DWF QCD and almost physical pion masses

Robert Mawhinney
Columbia University
Lattice 2010, Villasimius, Sardinia, Italy
June 13-18, 2010

RBC and UKQCD Collaborations

2+1 flavor DWF Ensembles

- $\quad \mathrm{DWF}+\mathrm{I}=\mathrm{DWF}$ fermions with the Iwasaki gauge action (Detailed results in talk by Chris Kelly)
- DWF+ID = DWF fermions and the Iwasaki/Dislocation Suppressing Determinant Ratio gauge action

DWF+I results - 2010

- NLO SU(2) ChPT fits, including $O\left(a^{2}\right)$ corrections to LO constants
- Fits reweight/interpolate in m_{s} to achieve self-consistent value
- Use known m_{π}, m_{K} and m_{Ω} to set scale, $m_{u d}$ and m_{s}
- 2 lattice spacings, assume $O\left(a^{2}\right)$ scaling
* $\mathrm{O}\left(\mathrm{a}^{2}\right)$ corrections are percent level
- $5-8 \%$ ChPT errors expected from behavior of series for $\mathrm{m}_{\pi} \sim 300 \mathrm{MeV}$ * For f_{π}, where we have data, NLO corrections are $20-30 \%$ of LO
- Estimated ChPT errors consistent with disagreement with experiment
- Many observables measured:
* $\mathrm{f}_{\pi}, \mathrm{f}_{\mathrm{K}}, \mathrm{B}_{\mathrm{K}}, \mathrm{Kl3}$, nucleons, E\&M splittings ...
* Larger volumes than the $(2.75 \mathrm{fm})^{3}$ here are needed
- Chiral extrapolation is dominant error

DWF+I results (Lattice 2009) with NNLO

- Uncorrelated, least squares fit with no inputs besides lattice data and physical values for m_{π}, m_{K} and m_{Ω}

DWF+ID

- Working on coarser lattices allows small m_{π} and large volumes
- Direct calculation of $\mathrm{K}->\pi \pi$ weak matrix elements
- Nucleon observables
- Residual mass for DWF grows rapidly as β decreases
- Add a 2 flavor Wilson determinant to control $\mathrm{m}_{\text {res }}$

$$
\begin{aligned}
\mathscr{W}\left(M, \varepsilon_{f}, \varepsilon_{b}\right) & =\frac{\operatorname{det}\left[D_{\mathscr{W}}\left(-M+\imath \varepsilon_{b} \gamma^{5}\right)^{\dagger} D_{\mathscr{W}}\left(-M+\imath \varepsilon_{b} \gamma^{5}\right)\right]}{\operatorname{det}\left[D_{\mathscr{W}}\left(-M+\imath \varepsilon_{f} \gamma^{5}\right)^{\dagger} D_{\mathscr{W}}\left(-M+\iota \varepsilon_{f} \gamma^{5}\right)\right]} \\
& =\frac{\operatorname{det}\left[D_{\mathscr{W}}(-M)^{\dagger} D_{\mathscr{W}}(-M)\right]+\varepsilon_{f}^{2}}{\operatorname{det}\left[D_{\mathscr{W}}(-M)^{\dagger} D_{\mathscr{W}}(-M)\right]+\varepsilon_{b}^{2}}=\prod_{i} \frac{\lambda_{i}^{2}+\varepsilon_{f}^{2}}{\lambda_{i}^{2}+\varepsilon_{b}^{2}}
\end{aligned}
$$

- $\mathrm{M}=1.8$, far from M_{c} for Wilson fermions
- Implies λ_{i} small only for non-continuum configurations
- Example: configuration where topology is changing

DWF+ID

- Measuring 12 smallest eigenvalues of $\mathrm{D}_{\text {wil }}\left(\mathrm{m}_{5}\right)$ without DSDR (left) and with (right) shows change in $\varrho(0)$ (arXiv:0902.2587)
- β changed to keep lattice scale similar
- Tune ε_{f} and ε_{b} to make $\mathrm{m}_{\mathrm{res}}$ small and still allow topological tunneling
- For $1 / \mathrm{a} \sim 1.4 \mathrm{GeV}$, we use $\varepsilon_{\mathrm{f}}=0.02$ and $\varepsilon_{\mathrm{b}}=0.5$

DWF+ID Ensembles

- $32^{3} \times 64 \times 32, \beta=1.75, \mathrm{M}_{5}=1.8, \varepsilon_{\mathrm{f}}=0.02, \varepsilon_{\mathrm{b}}=0.5$
- Multilevel RHMC with Hasenbusch preconditioning
- $\mathrm{m}_{\text {res }}=0.00187 \rightarrow 3$ to 4 MeV , after renormalizing to MS-bar
- Two dynamical mass choices $\left(\mathrm{m}_{1}, \mathrm{~m}_{\mathrm{h}}\right)$
- $(0.0001+$ mres, $0.045+$ mres $)->m_{\pi} \sim 180 \mathrm{MeV}$
- $(0.001+$ mres, $0.045+$ mres $)->m_{\pi} \sim 250 \mathrm{MeV}$
- Valence mass give $\mathrm{m}_{\pi} \sim 150,180,250,320 \mathrm{MeV}$
- ~50 measurements on 180 MeV ensemble (only 30 used here)
- ~150 measurements on 250 MeV ensemble (only 120 used here)

Topology for 250 MeV DWF+ID Ensemble

Topology moving quite well, as expected at strong coupling

Fitting DWF+I and DWF+ID together

- With two lattice spacings for DWF+I, fit to NLO SU(2) ChPT
- Include different $\mathrm{O}\left(\mathrm{a}^{2}\right)$ corrections to LO LEC's for different actions
- Formula for f_{11} is

$$
\begin{aligned}
f_{l l}= & f_{0}\left[1+c_{f_{0}} a^{2}\right]+f_{0} \cdot\left\{\frac{24}{f_{0}^{2}} L_{4}^{(3)} \bar{\chi}+\frac{8}{f_{0}^{2}} L_{5}^{(3)} \chi_{l}\right. \\
& \left.-\frac{1}{16 \pi^{2} f_{0}^{2}}\left[\frac{\chi_{l}+\chi_{h}}{2} \log \frac{\chi_{l}+\chi_{h}}{2 \Lambda_{\chi}^{2}}+2 \chi_{l} \log \frac{\chi_{l}}{\Lambda_{\chi}^{2}}\right]\right\}
\end{aligned}
$$

- To add in DWF+ID, just need a new $\mathrm{O}\left(\mathrm{a}^{2}\right)$ coefficient
- Chiral expansions for m_{π}^{2} and f_{π} done in terms of chiral limit f_{0}
- All expansions use lattice quark mass as expansion parameter
- Fits give relative normalization of quarks between ensembles
- All quark masses on plots are renormalized to MS-bar at 2 GeV
- Conversion to MS-bar done via NPR from one ensemble

Parameters in DWF+I and DWF+ID Global Fits

- Simultaneous fit to $\mathrm{m}_{\pi}^{2}, \mathrm{~m}_{\mathrm{K}}{ }^{2}, \mathrm{f}_{\pi}, \mathrm{f}_{\mathrm{K}}$, and m_{Ω}
- $\mathrm{m}_{\pi}, \mathrm{m}_{\mathrm{K}}$ and m_{Ω} chosen to be quantities without $\mathrm{O}\left(\mathrm{a}^{2}\right)$ corrections
- Parameters in $\mathrm{SU}(2)$ chiral expansion:
- $\mathrm{m}_{\pi}{ }^{2}$ and $\mathrm{f}_{\pi}: 8$ parameters $-2 \mathrm{LO}, 4 \mathrm{NLO}, 2 \mathrm{O}\left(\mathrm{a}^{2}\right)$
- $\mathrm{m}_{\mathrm{K}}^{2}$ and $\mathrm{f}_{\mathrm{K}}: 6$ parameters $-2 \mathrm{LO}, 4 \mathrm{NLO}, 2 \mathrm{O}\left(\mathrm{a}^{2}\right)$
- $\mathrm{m}_{\Omega}: 1 \mathrm{LO}, 1 \mathrm{NLO}$
- Total: 18 parameters
- Fits also determine
- 3 lattice spacings
- 2 ratios of light quark mass renormalization factors
- 2 ratios of strange quark mass renormalization factors
- m_{s}

Fitting DWF+I: NLO SU(2) ChPT, w/o FV

Fitting DWF + I and DWF+ID together: legend

- DWF+I
- $\mathrm{m}_{\pi}<420 \mathrm{MeV}$

DWF+ID and DWF+ID

- Only use ensembles with $\mathrm{m}_{\pi}<380 \mathrm{MeV}$ $\left(\mathrm{m}_{1}<30 \mathrm{MeV}\right)$
- valence $\mathrm{m}_{\pi}<420 \mathrm{MeV}$
- DWF+I and DWF+ID
- $\mathrm{m}_{\pi}<420 \mathrm{MeV}$

DWF+ID and DWF+ID

- Only use ensembles with $\mathrm{m}_{\pi}<380 \mathrm{MeV}$ $\left(\mathrm{m}_{1}<30 \mathrm{MeV}\right)$
- Valence $\mathrm{m}_{\pi}<380 \mathrm{MeV}$

DWF+I and DWF+ID together: χ^{2}

$\mathrm{DWF}+\mathrm{I}$ and $\mathrm{DWF}+\mathrm{ID}:$ degenerate $\mathrm{m}_{\pi}{ }^{2}$

$\mathrm{DWF}+\mathrm{I}$ and $\mathrm{DWF}+\mathrm{ID}$ together: unitary $\mathrm{m}_{\pi}{ }^{2}$

$\mathrm{DWF}+\mathrm{I}$ and $\mathrm{DWF}+\mathrm{ID}$ together: unitary $\mathrm{m}_{\mathrm{K}}{ }^{2}$

DWF+I and DWF+ID together: m_{Ω}

DWF+I and DWF+ID together: unitary f_{π}

DWF+I and DWF+ID together: unitary f_{K}

Preliminary results from DWF+I and DWF+ID

- With more and lighter quark masses, can remove heaviest ones from fits
- In preliminary fits: drop largest m_{π} from 420 MeV to 350 MeV
- Continuum f_{π} changes from 119.7 MeV to $\sim 124 \mathrm{MeV}$
- Continuum f_{K} increases slightly, $\sim 1 \mathrm{MeV}$
- Consistent with the expected size of NLO fit systematics
- $\mathrm{O}\left(\mathrm{a}^{2}\right)$ coefficients for f_{π} (preliminary values)
- DWF+I: $c_{f}=0.027 \mathrm{GeV}^{2} \rightarrow \sim 0.5 \%$ scaling error at $1 / \mathrm{a}=2.3 \mathrm{GeV}$
- DWF+ID: $\mathrm{c}_{\mathrm{f}}=0.083 \mathrm{GeV}^{2} \rightarrow \sim 4 \%$ scaling error at $1 / \mathrm{a}=1.4 \mathrm{GeV}$
- These scalings agree with scaling at unphysical quark masses
- NLO ChPT finite volume effects to be included soon
- NNLO fits will be rerun - what will increased data do?

Thermodynamics with DWF+ID

- Columbia DWF+I thermo has led to HotQCD DWF+ID thermo
- Investigating $\mathrm{N}_{\mathrm{t}}=8$ transition with $\mathrm{m}_{\pi}=200 \mathrm{MeV}$
- Exciting opportunity to study thermo with full flavor symmetry, $\mathrm{U}_{\mathrm{A}}(1)$ symmetry only broken by QCD and $\sim 5 \%$ scaling errors

Summary

- DWF+ID ensemble generation and basic measurements well underway
- Topological charge evolution for DWF+ID looks very encouraging, substantial motion of $\mathrm{Q}_{\text {top }}$ during evolution.
- Preliminary global fits to DWF+I and DWF+ID ensembles:
- allow lighter pions to be used in ChPT fits
- increase f_{π} in continuum limit by $\sim 4 \mathrm{MeV}$
- Current $4-8 \%$ ChPT ext. errors on $\mathrm{f}_{\pi}, \mathrm{f}_{\mathrm{K}}, \mathrm{B}_{\mathrm{K}} \ldots$ may drop by $\sim 2 \times$
- Preliminary fits show $\sim 5 \%$ scaling errors for f_{π} on $\mathrm{DWF}+$ ID ensemble with $1 / \mathrm{a} \sim 1.4 \mathrm{GeV}$
- Scaling at unphysical quark masses for DWF+ID ensembles will give additional check on $\mathrm{O}\left(\mathrm{a}^{2}\right)$ scaling
- DWF+ID also being used for $2+1$ flavor thermo with $m_{\pi}=200 \mathrm{MeV}$
- These calculations have used the RBRC QCDOC, BNL NYBlue, LLNL and ANL computers with time provided by the RBRC, BNL, HotQCD and USQCD organizations.

