2+1 flavor DWF QCD and almost physical pion masses

Robert Mawhinney Columbia University Lattice 2010, Villasimius, Sardinia, Italy June 13-18, 2010

RBC and **UKQCD** Collaborations

2+1 flavor DWF Ensembles

• DWF+I = DWF fermions with the Iwasaki gauge action (Detailed results in talk by Chris Kelly)

• DWF+ID = DWF fermions and the Iwasaki/Dislocation Suppressing Determinant Ratio gauge action

DWF+I results - 2010

- NLO SU(2) ChPT fits, including $O(a^2)$ corrections to LO constants
- Fits reweight/interpolate in m_s to achieve self-consistent value
- Use known m_{π} , m_{K} and m_{Ω} to set scale, m_{ud} and m_{s}
- 2 lattice spacings, assume O(a²) scaling
 - * $O(a^2)$ corrections are percent level
- 5-8% ChPT errors expected from behavior of series for $m_{\pi} \sim 300 \text{ MeV}$
 - * For f_{π} , where we have data, NLO corrections are 20-30% of LO
- Estimated ChPT errors consistent with disagreement with experiment
- Many observables measured:
 - * $f_{\pi}, f_{K}, B_{K}, K13$, nucleons, E&M splittings ...
 - * Larger volumes than the $(2.75 \text{ fm})^3$ here are needed
- Chiral extrapolation is dominant error

DWF+I results (Lattice 2009) with NNLO

• Uncorrelated, least squares fit with no inputs besides lattice data and physical values for m_{π} , m_{K} and m_{Ω}

DWF+ID

- Working on coarser lattices allows small m_{π} and large volumes
 - Direct calculation of K $\rightarrow\pi\pi$ weak matrix elements
 - Nucleon observables
- Residual mass for DWF grows rapidly as β decreases
- Add a 2 flavor Wilson determinant to control m_{res}

$$\mathcal{W}(M,\varepsilon_{f},\varepsilon_{b}) = \frac{\det[D_{\mathscr{W}}(-M+\iota\varepsilon_{b}\gamma^{5})^{\dagger}D_{\mathscr{W}}(-M+\iota\varepsilon_{b}\gamma^{5})]}{\det[D_{\mathscr{W}}(-M+\iota\varepsilon_{f}\gamma^{5})^{\dagger}D_{\mathscr{W}}(-M+\iota\varepsilon_{f}\gamma^{5})]}$$
$$= \frac{\det[D_{\mathscr{W}}(-M)^{\dagger}D_{\mathscr{W}}(-M)] + \varepsilon_{f}^{2}}{\det[D_{\mathscr{W}}(-M)^{\dagger}D_{\mathscr{W}}(-M)] + \varepsilon_{b}^{2}} = \prod_{i}\frac{\lambda_{i}^{2} + \varepsilon_{f}^{2}}{\lambda_{i}^{2} + \varepsilon_{b}^{2}}$$

- M = 1.8, far from M_c for Wilson fermions
 - Implies λ_i small only for non-continuum configurations
 - Example: configuration where topology is changing

DWF+ID

- Measuring 12 smallest eigenvalues of $D_{wil}(m_5)$ without DSDR (left) and with (right) shows change in $\varrho(0)$ (arXiv:0902.2587)
 - β changed to keep lattice scale similar
- Tune ε_f and ε_b to make m_{res} small and still allow topological tunneling
 - For $1/a \sim 1.4$ GeV, we use $\varepsilon_f = 0.02$ and $\varepsilon_b = 0.5$

DWF+ID Ensembles

- $32^3 \times 64 \times 32, \beta = 1.75, M_5 = 1.8, \epsilon_f = 0.02, \epsilon_b = 0.5$
- Multilevel RHMC with Hasenbusch preconditioning
- $m_{res} = 0.00187 \rightarrow 3$ to 4 MeV, after renormalizing to MS-bar
- Two dynamical mass choices (m₁,m_h)
 - $(0.0001 + \text{mres}, 0.045 + \text{mres}) \rightarrow m_{\pi} \sim 180 \text{ MeV}$
 - $(0.001 + \text{mres}, 0.045 + \text{mres}) \rightarrow m_{\pi} \sim 250 \text{ MeV}$
- Valence mass give $m_{\pi} \sim 150, 180, 250, 320 \text{ MeV}$
- ~50 measurements on 180 MeV ensemble (only 30 used here)
- ~150 measurements on 250 MeV ensemble (only 120 used here)

Topology for 250 MeV DWF+ID Ensemble

Topology moving quite well, as expected at strong coupling

Fitting DWF+I and DWF+ID together

- With two lattice spacings for DWF+I, fit to NLO SU(2) ChPT
- Include different $O(a^2)$ corrections to LO LEC's for different actions
- Formula for f₁₁ is

$$f_{ll} = f_0 \left[1 + c_{f_0} a^2 \right] + f_0 \cdot \left\{ \frac{24}{f_0^2} L_4^{(3)} \bar{\chi} + \frac{8}{f_0^2} L_5^{(3)} \chi_l - \frac{1}{16\pi^2 f_0^2} \left[\frac{\chi_l + \chi_h}{2} \log \frac{\chi_l + \chi_h}{2\Lambda_\chi^2} + 2\chi_l \log \frac{\chi_l}{\Lambda_\chi^2} \right] \right\},$$

- To add in DWF+ID, just need a new $O(a^2)$ coefficient
- Chiral expansions for m_{π}^2 and f_{π} done in terms of chiral limit f_0
- All expansions use lattice quark mass as expansion parameter
 - Fits give relative normalization of quarks between ensembles
- All quark masses on plots are renormalized to MS-bar at 2 GeV
 - Conversion to MS-bar done via NPR from one ensemble

Parameters in DWF+I and DWF+ID Global Fits

- Simultaneous fit to m_{π}^{2} , m_{K}^{2} , f_{π} , f_{K} , and m_{Ω}
- m_{π} , m_{K} and m_{Ω} chosen to be quantities without O(a²) corrections
- Parameters in SU(2) chiral expansion:
 - m_{π}^2 and f_{π} : 8 parameters 2 LO, 4 NLO, 2O(a²)
 - m_K^2 and f_K : 6 parameters 2 LO, 4 NLO, 2O(a²)
 - m_{Ω} : 1 LO, 1 NLO
 - Total: 18 parameters
- Fits also determine
 - 3 lattice spacings
 - 2 ratios of light quark mass renormalization factors
 - 2 ratios of strange quark mass renormalization factors
 - m_s

Fitting DWF+I: NLO SU(2) ChPT, w/o FV

Fitting DWF+I and DWF+ID together: legend

DWF+I and DWF+ID together: χ^2

DWF+I and DWF+ID: degenerate m_{π}^2

DWF+I and DWF+ID together: unitary m_{π}^2

DWF+I and DWF+ID together: unitary m_{K}^{2}

DWF+I and DWF+ID together: m_{Ω}

DWF+I and DWF+ID together: unitary f_{π}

DWF+I and DWF+ID together: unitary f_K

Preliminary results from DWF+I and DWF+ID

- With more and lighter quark masses, can remove heaviest ones from fits
 - In preliminary fits: drop largest m_{π} from 420 MeV to 350 MeV
 - Continuum f_{π} changes from 119.7 MeV to ~ 124 MeV
 - Continuum f_K increases slightly, ~ 1 MeV
 - Consistent with the expected size of NLO fit systematics
- $O(a^2)$ coefficients for f_{π} (preliminary values)
 - DWF+I: $c_f = 0.027 \text{ GeV}^2 \rightarrow -0.5\%$ scaling error at 1/a = 2.3 GeV
 - DWF+ID: $c_f = 0.083 \text{ GeV}^2 \rightarrow -4\%$ scaling error at 1/a = 1.4 GeV
- These scalings agree with scaling at unphysical quark masses
- NLO ChPT finite volume effects to be included soon
- NNLO fits will be rerun what will increased data do?

Thermodynamics with DWF+ID

- Columbia DWF+I thermo has led to HotQCD DWF+ID thermo
- Investigating $N_t = 8$ transition with $m_{\pi} = 200$ MeV
- Exciting opportunity to study thermo with full flavor symmetry, $U_A(1)$ symmetry only broken by QCD and ~5% scaling errors

Summary

- DWF+ID ensemble generation and basic measurements well underway
- Topological charge evolution for DWF+ID looks very encouraging, substantial motion of Q_{top} during evolution.
- Preliminary global fits to DWF+I and DWF+ID ensembles:
 - allow lighter pions to be used in ChPT fits
 - increase f_{π} in continuum limit by ~4 MeV
- Current 4-8% ChPT ext. errors on f_{π} , f_{K} , B_{K} ... may drop by ~2×
- Preliminary fits show ~5% scaling errors for f_{π} on DWF+ID ensemble with 1/a ~ 1.4 GeV
- Scaling at unphysical quark masses for DWF+ID ensembles will give additional check on O(a²) scaling
- DWF+ID also being used for 2+1 flavor thermo with $m_{\pi} = 200 \text{ MeV}$
- These calculations have used the RBRC QCDOC, BNL NYBlue, LLNL and ANL computers with time provided by the RBRC, BNL, HotQCD and USQCD organizations.