Light hadrons from $N_f=2+1+1$ dynamical twisted mass fermions

university of groningen

Outline

★ Twisted mass lattice action recap
 ★ Ensemble overview
 ★ Status and strategy of tuning
 ★ NLO SU(2) pion \(\chi PT\) fits
 ★ Preliminary new lattice spacing

Monday, June 14, 2010

Not in this talk

- ★ Baryon spectrum: Drach, P22 (Tuesday)
 ★ Nucleon matrix elements: Dinter, P2
 ★ N_f=4 setup for renormalization constants: Palao (an hour ago)
- ★ Pseudoscalar decay constants: Urbach, next
- \star Extraction of m_K and m_D: Pallante, poster

Action

- ★ 4 flavour twisted mass fermion action: mass degenerate light doublet, mass split heavy doublet: $N_f=2+(1+1)$
- ★ Iwasaki gauge action
- ★ PHMC algorithm
- ★ See also arXiv:1004.5248v1

Light doublet

★ N_f=2+1+1 twisted mass Wilson fermions: arXiv:hep-lat/0606011v1 (Chiarappa et al.)

$$\star S_{l} = a^{4} \sum_{x} \{ \bar{\chi}_{l}(x) [D[U] + m_{0,l} + i\mu_{l}\gamma_{5}\tau_{3}] \chi_{l}(x) \}$$

$$\star \text{Twisted basis: } \chi_{l} = \begin{pmatrix} \chi_{u} \\ \chi_{d} \end{pmatrix}$$

$$\star \psi_{l}^{phys} = e^{\frac{i}{2}\omega_{l}\gamma_{5}\tau_{3}}\chi_{l} \quad \omega_{l} = \frac{\pi}{2}$$

$$\bigstar am_{0,l} \equiv 1/2\kappa - 4$$

Monday, June 14, 2010

Heavy doublet

★ Mass-split heavy doublet, details: arXiv:hep-lat/0311008v2 (Frezzotti, Rossi)

 $\star S_h = a^4 \sum_x \{ \bar{\chi}_h(x) [D[U] + m_{0,h} + i\mu_\sigma \gamma_5 \tau_1 + \mu_\delta \tau_3] \chi_h(x) \}$ $\star \text{Twisted basis: } \chi_h = \begin{pmatrix} \chi_c \\ \chi_s \end{pmatrix}$ $\star \psi_h^{phys} = e^{\frac{i}{2}\omega_h \gamma_5 \tau_1} \chi_h \quad \omega_h = \frac{\pi}{2}$ $\star am_{0,l} = am_{0,h} \equiv 1/2\kappa - 4$

Monday, June 14, 2010

Ensemble updates

★ New since last year:

★ Some runs have extended statistics

 \star Runs to tune m_s and m_c

★ Finite size effects checks

★ New, smaller lattice spacing with lighter pion masses, currently down to 230 MeV

Monday, June 14, 2010

Ensembles at $\beta = 1.90$

Label	к	aµı	aμσ	aμδ	L/a	T/a	mπL
A30.32	0.1632720	0.0030	0.150	0.190	32	64	4.0
A40.32	0.1632700	0.0040	0.150	0.190	32	64	4.5
A40.24	0.1632700	0.0040	0.150	0.190	24	48	3.5
A40.20	0.1632700	0.0040	0.150	0.190	20	48	3.0
A50.32	0.1632670	0.0050	0.150	0.190	32	64	5.1
A50.24	0.1632670	0.0050	0.150	0.190	24	48	
A60.24	0.1632650	0.0060	0.150	0.190	24	48	4.2
A80.24	0.1632600	0.0080	0.150	0.190	24	48	4.8
A80.24s	0.1632040	0.0080	0.150	0.197	24	48	4.8
A100.24	0.1632550	0.0100	0.150	0.190	24	48	5.4
A100.24s	0.1631960	0.0100	0.150	0.197	24	48	5.3
A100.24s2		0.0100	0.13	0.17	24	48	

$\beta = 1.95, \beta = 2.10$

Label	β	К	aµı	aμσ	αμ δ	L/a	T/a	mπL
B25.32	1.95	0.1612410	0.0025	0.135	0.170	32	64	3.4
B35.32	1.95	0.1612400	0.0035	0.135	0.170	32	64	4.0
B55.32	1.95	0.1612360	0.0055	0.135	0.170	32	64	5.0
B75.32	1.95	0.1612320	0.0075	0.135	0.170	32	64	5.8
B85.32	1.95	0.1612312	0.0085	0.135	0.170	24	48	4.7
D115.64	2.10		0.00115	0.120	0.1385	64	128	
D15.48	2.10	0.1563610	0.0015	0.120	0.1385	48	96	3.4
D20.48	2.10	0.1563570	0.0020	0.120	0.1385	48	96	3.9
D30.48	2.10	0.1563550	0.0030	0.120	0.1385	48	96	4.7

\star Not including N_f=4 runs

/ university of groningen

Monday, June 14, 2010

Tuning

- ★ Automatic O(a) improvement at (or near) maximal twist: $am_{PCAC,1} = 0$
- **\star** Tune independently to maximal twist at every $\mu_1, \mu_{\sigma}, \mu_{\delta}$ combination
- **\star** Follow criterium: $\left|\frac{Z_{\perp}}{Z_{\perp}}\right|$

$$\left| \frac{m_{\rm PCAC}}{\mu_l} \right| \lesssim 0.1$$

 \star Z_A ~ 0.75 (preliminary)

Monday, June 14, 2010

11/21

Tuning status

Monday, June 14, 2010

Tuning status

Monday, June 14, 2010

university of groningen

Heavy doublet tuning

★ Measure kaon mass and D-meson mass
★ We now have several reliable ways to extract the D-meson mass
★ Also measure e.g. m_{K*}, m_{D*}, f_K, (decuplet)
★ Mixed action approach (Urbach, next talk)

Kaon & D-meson mass

university of groningen

Chiral fits

- \star Pion NLO, some tests of NNLO, O(a²)
- ★ Other decay constants covered by Urbach (next), baryons covered by Drach (P22)
- ★ Consistency checks: combine spacings, separate check of r_0/a , estimate scaling
- **★** Preliminary renormalization factors available at β =1.95

Chiral fits

★ Finite size effects using Colangelo, Dürr, Haefeli (CDH) resummed expression \star Use only largest volumes at each mass ★ Do not use new strange/charm sets (yet) \star Fit a ratio of Z_P for other lattice spacings \star Set lattice spacing by finding where f_{π}/m_{π} obtains its physical value

Fits (check)

★ A: β=1.90, B: β=1.95, D: β=2.10

Set	А	A,D	В	B,D	A,B	A,B,D	D
f_0	121.0	121.0	121.1	121.2	121.0	121.0	121.7
13	3.44	3.43	3.70	3.70	3.54	3.53	3.45
14	4.77	4.76	4.67	4.66	4.74	4.73	4.43
f_{π}/f_0	1.078	1.078	1.076	1.076	1.077	1.077	1.072
a _A (fm)	0.086	0.086			0.086	0.086	
$a_{\rm B}({\rm fm})$			0.078	0.078	0.078	0.078	
$a_D(fm)$		0.061		0.061		0.061	0.062

\star β=2.10 data does not constrain combined fits yet

Combined fit

Monday, June 14, 2010

r₀/a & scaling

Conclusions

- ★ Substantial increase in number of ensembles (new lattice spacing, heavy sector, FSE)
- ★ Results in light sector so far appear consistent and indicate good scaling
- ★ Several interesting results and checks coming soon: e.g. lighter mass, Z's at all β
 ★ Other observables: other talks

Topological charge D20.48

university of groningen

Finite size effects

