Computing the long-distance contribution to second order weak amplitudes

> Lattice 2010 June 15, 2010

Norman H. Christ

RBC and **UKQCD** Collaborations

RBC Collaboration

- Columbia
 - Norman Christ
 - Michael Endres
 - Xiao-Yong Jin
 - Matthew Lightman
 - Meifeng Lin (Yale)
 - Qi Liu
 - Robert Mawhinney
 - Hao Peng
 - Dwight Renfrew
 - Hantao Yin
- RBRC
 - Yasumichi Aoki
 - Tom Blum (Connecticut)
 - Saumitra Chowdhury (Connecticut)
 - Chris Dawson (Virginia)
 - Tomomi Ishikawa (Connecticut)
 - Taku Izubuchi (BNL)
 - Christopr Lehner
 - Shigemi Ohta (KEK)
 - Eigo Shintani
 - Ran Zhou (Connecticut)

- BNL
 - Michael Creutz
 - Shinji Ejiri
 - Prasad Hegde
 - Taku Izubuchi
 - Chulwoo Jung
 - Frithjof Karsch
 - Swagato Mukherjee
 - Chuan Miao
 - Peter Petreczky
 - Amarjit Soni
 - Ruth Van de Water
 - Alexander Velytsky
 - Oliver Witzel

UKQCD Collaboration

- Edinburgh
 - Rudy Arthur
 - Peter Boyle
 - Luigi del Debbio
 - Nicolas Garron
 - Chris Kelly
 - Tony Kennedy
 - Richard Kenway
 - Chris Maynard
 - Brian Pendleton
 - James Zanotti

- Southampton
 - Dirk Brommel
 - Jonathan Flynn
 - Patrick Fritzsch
 - Elaine Goode
 - Chris Sachrajda

Outline

- Introduction
- Naïve lattice 2nd order self-energy
- Correct the short distance contribution
- Reduce finite volume errors
- Conclusion

Introduction

• Time evolution of $K^0 - \overline{K^0}$ system given by familiar Wigner-Weisskopf formula:

$$i\frac{d}{dt}\left(\frac{K^{0}}{\overline{K}^{0}}\right) = \left\{ \left(\begin{array}{ccc} M_{K^{0}K^{0}} & M_{\overline{K}^{0}\overline{K}^{0}} \\ M_{\overline{K}^{0}K^{0}} & M_{\overline{K}^{0}\overline{K}^{0}} \end{array}\right) - \frac{i}{2} \left(\begin{array}{ccc} \Gamma_{K^{0}K^{0}} & \Gamma_{\overline{K}^{0}\overline{K}^{0}} \\ \Gamma_{\overline{K}^{0}\overline{K}^{0}} & \Gamma_{\overline{K}^{0}\overline{K}^{0}} \end{array}\right) \right\} \left(\begin{array}{c} K^{0} \\ \overline{K}^{0} \end{array}\right)$$

where:

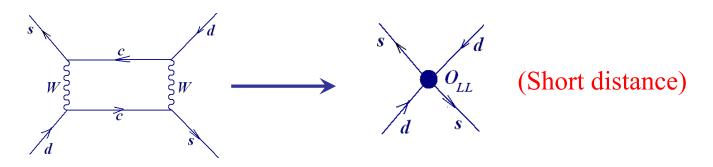
$$\Gamma_{ij} = 2\pi \sum_{\alpha} \int_{2m_{\pi}}^{\infty} dE \langle i | H_W | \alpha(E) \rangle \langle \alpha(E) | H_W | j \rangle \delta(E - m_K)$$
$$M_{ij} = \sum_{\alpha} \mathcal{P} \int_{2m_{\pi}}^{\infty} dE \frac{\langle i | H_W | \alpha(E) \rangle \langle \alpha(E) | H_W | j \rangle}{m_K - E}$$

• Neglecting CP violation:

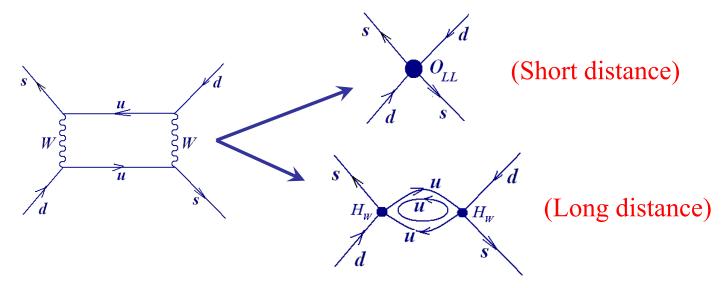
$$m_{K_S} - m_{K_L} = 2M_{K^0\overline{K}}^0$$

Contributions to m_{K_S} - m_{K_L}

• Charm part expected to be largest:

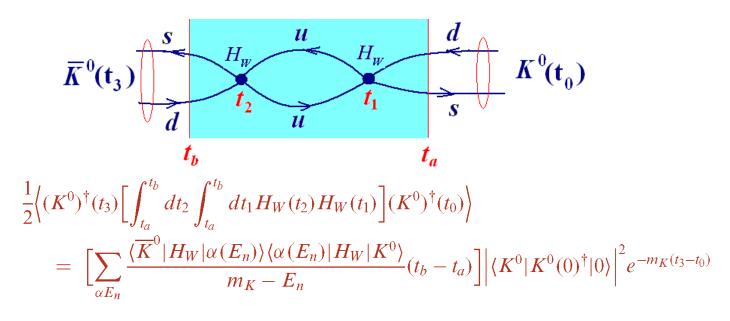


• Possible $\Delta I = \frac{1}{2}$ enhanced $\pi - \pi$ contribution:



Naïve Lattice Perturbation Theory

• Begin with standard 2nd order perturbation theory:



• If box size is tuned to make $E_0 = m_K$:

$$= \left[\sum_{\alpha,E_n\neq E_0} \frac{\langle \overline{K}^0 | H_W | \alpha(E_n) \rangle \langle \alpha(E_n) | H_W | K^0 \rangle}{m_K - E_n} (t_b - t_a) + \frac{1}{2} \langle \overline{K}^0 | H_W | \alpha(E_0) \rangle \langle \alpha(E_0) | H_W | K^0 \rangle (t_b - t_a)^2 \right] \left| \langle K^0 | K^0(0)^{\dagger} | 0 \rangle \right|^2 e^{-m_K (t_3 - t_0)}$$

Lattice 2010, June 15, 2010 (7)

Naïve Lattice Perturbation Theory

• Begin with standard 2nd order perturbation theory:



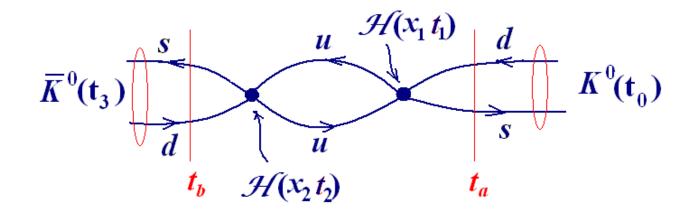
• If box size is tuned to make $E_0 = m_K$:

$$= \left[\sum_{\substack{K \in E_n \neq E_0}} \frac{\langle \overline{K}^0 | H_W | \alpha(E_n) \rangle \langle \alpha(E_n) | H_W | K^0 \rangle}{m_K - E_n} (t_b - t_a) \right] \left[\langle \overline{K}^0 | \overline{K}^0 (0)^{\dagger} | 0 \rangle \right]^2 e^{-m_K (t_3 - t_0)}$$

Lattice 2010, June 15, 2010 (8)

Correct short distance component

• Naïve 2nd order calculation fails when $(x_1 t_1) \rightarrow (x_2 t_2)$



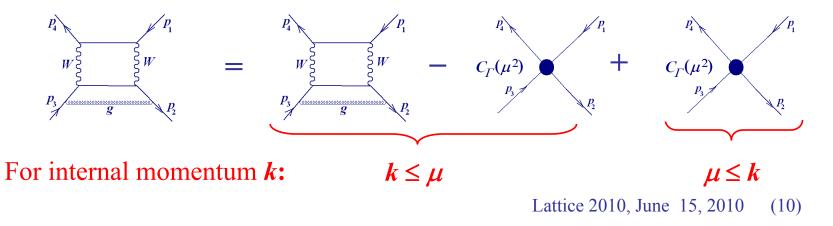
• Use RI/MOM normalized subtraction to replace unphysical with physical short distance part.

Recall extraction of short distance part

• Determine Wilson coefficient:

when evaluated at $p_a \cdot p_b = \mu^2 (1 - 4\delta_{ab})$: $\Lambda_{\text{QCD}} < \mu < m_W$

• Separate into short and long distance parts:



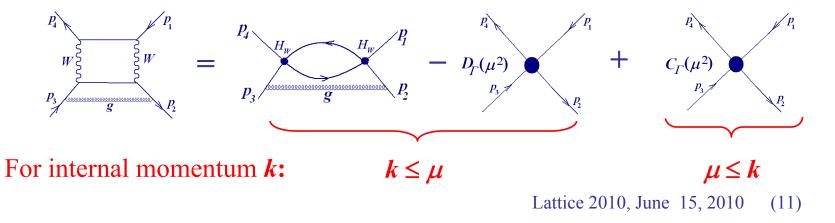
Replace long distance part with 2nd order PT

• Determine a new Wilson coefficient:



when evaluated at $p_a \cdot p_b = \mu^2 (1 - 4\delta_{ab})$: $\Lambda_{\text{QCD}} < \mu < m_W$

• Replace the long distance part:



Short distance contribution to long distance part

- Physical amplitude:
 - Finite before subtraction $\sim G_F^2 m_c^2$
 - Short distance contribution to long distance part $\sim G_F^2 m_c^2 \Lambda_{\rm QCD}^2/\mu^2$
- H_W^2 amplitude:
 - $-\mu < m_c$
 - Divergent before subtraction ~ $G_F^2 a^{-2}$
 - Requires dimension 6 and 8 subtractions

 $-m_c < \mu$

- Finite up to logs before subtraction (GIM)
- Short distance contribution ~ $G_F^2 m_c^2 \Lambda_{\rm QCD}^2/\mu^2$

Finite volume errors

- Singular energy denominator $1/(m_K E_n)$ will introduce uncontrolled $1/L^3$ errors.
- Generalize the Lellouch-Luscher method to relate the finite and infinite volume mass shift:
 - Finite volume π - π energy gives $k = \sqrt{E_{\pi\pi}^2/4 m_{\pi}^2}$
 - Infinite volume width and mass shift determine weak π - π resonant phase shift $\delta_W(k)$
 - Relate them by imposing Luscher condition

$$\phi\left(\frac{kL}{2\pi}\right) + \delta_0(k) + \delta_W(k) = n\pi$$

$$\tan(\phi(q)) = -\frac{\pi^{3/2}q}{Z_{00}(1,q^2)} \qquad Z_{00} = \frac{1}{\sqrt{4\pi}} \sum_{n \in \mathbb{Z}^3} \frac{1}{(n^2 - q^2)^s}$$
 Lattice 2010, June 15, 2010 (13)

Finite volume energy

- Adjust volume so $E_{\pi\pi} = m_K$ and use degenerate perturbation theory.
- Energies given by eigenvalues of

$$\begin{pmatrix} m_{K} + \sum_{\alpha, E_{n} \neq m_{K}0} \frac{|\langle \alpha(E_{n})|H_{W}|K_{S} \rangle|^{2}}{m_{K} - E_{n}} & \langle K_{S}|H_{W}|\pi\pi \rangle \\ \langle \pi\pi|H_{W}|K_{S} \rangle & m_{K} + \sum_{\alpha, E_{n} \neq m_{K}} \frac{|\langle \alpha(E_{n})|H_{W}|\pi\pi \rangle|^{2}}{m_{K} - E_{n}} \end{pmatrix}$$

$$E_{\pm} = m_K \pm \langle K_S | H_W | \pi \pi \rangle$$

+
$$\frac{1}{2} \Big[\sum_{\alpha, E_n \neq m_K} \frac{|\langle \alpha(E_n) | H_W | K_S \rangle|^2}{m_K - E_n} + \sum_{\alpha, E_n \neq m_K} \frac{|\langle \alpha(E_n) | H_W | \pi \pi \rangle|^2}{m_K - E_n} \Big]$$

Lattice 2010, June 15, 2010 (14)

Finite volume energy

- Adjust volume so $E_{\pi\pi} = m_K$ and use degenerate perturbation theory.
- Energies given by eigenvalues of

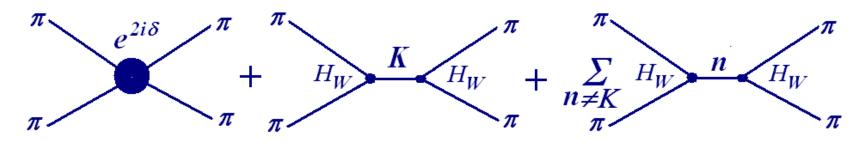
$$\begin{pmatrix} m_{K} + \sum_{\alpha, E_{n} \neq m_{K}0} \frac{|\langle \alpha(E_{n})|H_{W}|K_{S} \rangle|^{2}}{m_{K} - E_{n}} & \langle K_{S}|H_{W}|\pi\pi \rangle \\ \langle \pi\pi|H_{W}|K_{S} \rangle & m_{K} + \sum_{\alpha, E_{n} \neq m_{K}} \frac{|\langle \alpha(E_{n})|H_{W}|\pi\pi \rangle|^{2}}{m_{K} - E_{n}} \end{pmatrix}$$

$$E_{\pm} = m_{K} \pm \langle K_{S}|H_{W}|\pi\pi \rangle + \frac{1}{2} \sum_{\alpha, E_{n} \neq m_{K}} \frac{|\langle \alpha(E_{n})|H_{W}|K_{S} \rangle|^{2}}{m_{K} - E_{n}} + \sum_{\alpha, E_{n} \neq m_{K}} \frac{|\langle \alpha(E_{n})|H_{W}|\pi\pi \rangle|^{2}}{m_{K} - E_{n}} \end{bmatrix}$$

$$\hat{M}_{K_{S}}^{(2)}$$

Lattice 2010, June 15, 2010 (15)

Infinite volume scattering



• Total phase shift $\delta_{tot}(k)$:

$$\delta_{\text{tot}}(k) = \delta_0(k) + \arctan\left(\frac{\Gamma(k)/2}{m_K + M_{K_S}^{(2)} - E_k}\right) \\ -\frac{E_k k}{2\pi} \sum_{\alpha} \int dE' \frac{\langle \pi \pi(k) | H_W | \alpha(E') \rangle \langle \alpha(E') | H_W | \pi \pi(k) \rangle}{E_k - E'}$$

• Require that:

$$\delta_{\rm tot}(k_{\pm}) + \phi\left(\frac{k_{\pm}L}{2\pi}\right) = n\pi$$

Lattice 2010, June 15, 2010 (16)

Infinite-finite volume relations

• Expand to 1^{st} order in H_W

$$\Gamma = \frac{2E_k}{k} \frac{\partial}{\partial k} \left(\phi \left(\frac{kL}{2\pi} \right) + \delta_0(k) \right) |\langle \pi \pi(k) | H_W | K_S \rangle|^2$$

• Expand to 2nd order in H_W and subtract $M_{KL}^{(2)} = \hat{M}_{KL}^{(2)}$

$$M_{\overline{K}^0 K^0} = \hat{M}_{\overline{K}^0 K^0} + rac{m_\pi^2}{2m_K k^2} |\langle \pi \pi(E) | H_W | K_S
angle|^2
onumber \ -rac{\partial}{\partial E} |\langle \pi \pi(E) | H_W | K_S
angle|^2$$

Lattice 2010, June 15, 2010 (17)

Conclusion

- With sufficient computing power a lattice calculation of m_{K_S} m_{K_L} appears possible.
- Include valence charm quarks.
- Apply NPR methods to second order amplitudes.
- Use on-shell $K \rightarrow \pi \pi$ kinematics and remove $(t_b - t_a)^2 \pi - \pi$ contribution from 2nd order self energy amplitude.
- Add known $1/L^3$ correction.