Strangeness in the nucleon from a mixed action calculation

Michael Engelhardt (LHPC)

New Mexico State University

Motivation

- Learn something about disconnected diagrams in the MILC/DWF mixed action scheme
- Extract some physics while we're at it ...
 - Combined analysis of experimental data on strange axial form factor of nucleon: S. Pate, D. McKee and V. Papavassiliou, Phys. Rev. C 78 (2008) 015207.

Observables:

$$f_{T_s} = \frac{m_s \langle N | \bar{s}s | N \rangle}{m_N}$$

$$\Delta s = \langle N, \uparrow | \bar{s} \gamma_i \gamma_5 s | N, \uparrow \rangle$$

Obtain matrix elements from lattice correlator ratios:

$$R[\Gamma^{nuc}, \Gamma^{obs}](t) = \frac{\langle \left[\text{Tr } \Gamma^{nuc} \Sigma_{\vec{x}} N(\vec{x}, t) \bar{N}(0, 0) \right] \cdot \left[\text{Tr } \Gamma^{obs} s\bar{s} \right] \rangle}{\langle \text{Tr } \Gamma^{unpol} \Sigma_{\vec{x}} N(\vec{x}, t) \bar{N}(0, 0) \rangle}$$

$$(\text{ where } \Gamma^{unpol} = (1 + \gamma_4)/2)$$

$$\frac{m_s}{m_N} \left(R[\Gamma^{unpol}, \mathbf{1}](t) - [\text{VEV}] \right) \longrightarrow f_{T_s}$$

$$-i \cdot 2 \cdot R[\ (-i\gamma_i\gamma_5/2)\ \Gamma^{unpol}, \gamma_i\gamma_5\](t) \longrightarrow \Delta s$$

Lattice setup

- Averaging observable over 5 time slices, $\Sigma_{t=3...7} \Sigma_{\vec{x}} \Gamma^{obs} s\bar{s}$
- 600-1200 bulk stochastic sources in this region
- 4-8 separate spatial positions for nucleon source

Further calculational details

- Use HYP-smeared MILC $20^3 \times 64$ asqtad configurations with lattice spacing a=0.124 fm at two pion masses, $m_{\pi}=356\,\mathrm{MeV}$, $495\,\mathrm{MeV}$.
- Carry out described scheme in three separate temporal regions of the $20^3 \times 64$ lattices.
- ullet Average Δs over three spatial directions.

Results for f_{T_s}

Note: f_{T_s} values revised by an overall factor compared to slides used in talk

Results for Δs

$$\Delta s|_{t=10} = -0.030(9)$$

$$\Delta s|_{t=10...14} = -0.030(19)$$

$$\Delta s|_{t=10} = -0.030(7)$$

$$\Delta s|_{t=10...14} = -0.031(11)$$

Pion mass dependence

— Renormalization factors connecting this lattice scheme to \overline{MS} at scale 2 GeV generally very close to 1.1

Note: f_{T_s} values revised by an overall factor compared to slides used in talk

Summary

- Signals obtained for f_{T_s} and Δs at $m_{\pi} = 356 \,\mathrm{MeV}$, $495 \,\mathrm{MeV}$.
- Stochastic estimator for scalar matrix element converges much more rapidly than for axial vector; implementation of acceleration schemes desirable for latter case.
- Tentative extrapolation of f_{T_s} to physical point yields $f_{T_s} = 0.041(12)$, corresponding to $m_s \langle N | \bar{s}s | N \rangle = 39(12) \,\text{MeV}$.
- No indication of unnaturally large Δs contribution to nucleon spin.

Note: f_{T_s} values revised by an overall factor compared to slides used in talk