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Outline

Motivation of the formulation of QCD at non-zero quark chemical
potential on S1 × S3 using perturbation theory.

Action of QCD on S1 × S3 and results for the fermion number and
Polyakov lines for N = 3 at low temperature and zero quark mass.

N = ∞ theory and results for fermion number and Polyakov lines and
resulting phase diagram.

Preliminary N = 2 lattice results.



Partition Function of QCD

The partition function of QCD at finite temperature T = 1/β, for Nf

quark flavors, each with a mass mf and coupled to a chemical potential µf

is:

ZQCD =

∫

DADψ̄Dψe−
R β

0 dτ
R

d3
xLQCD

where ψ and ψ̄ are the fundamental and anti-fundamental fermion fields,
respectively, and A is the SU(N) gauge field, Aµ = Aa

µT
a.

The Lagrangian is

LQCD =
1

4g2
TrF (FµνFµν) +

Nf
∑

f =1

ψ̄f ( /DF (A) − γ0µf + mf )ψf ,

with covariant derivative

Dµ(A) ≡ ∂µ − Aµ.



What makes QCD at non-zero µ so difficult?

The Sign Problem:
QCD at finite quark chemical potential µ has a complex action:

eSf = exp

∫

Dψ̄Dψe
−

R β

0 dτ
R

d3
xψ̄

“

/D
F
(A)−γ0µ+m

”

ψ

= log det ( /DF (A) − γ0µ+ m) ∼
∞

∑

n=1

[

enβµe iθin + e−nβµe−iθin
]

The boltzmann weight e−S is complex so it is not possible to perform
lattice simulations which use importance sampling.

The sign problem also complicates large N analysis: In the large N

limit the saddle point approximation becomes valid, but the stationary
point of a complex action with respect to the angles of the Polyakov

line P = Pe
R β

0
dt A0(x) = diag{e iθ1 , ..., e iθN } lies in the space where

the angles are complex. Therefore the eigenvalues of the Polyakov
line lie off the unit circle on an arc in the complex plane.

=⇒ Need to generalize our techniques to handle a complex action.



Region of validity of 1-loop calculations

Properties of SU(N) gauge theories on S1 × S3

Valid for min[RS1 ,RS3 ] ≪ Λ−1
QCD

◮ R
3 × S1, small S1:
⋆ Good: Allows study at any N and in the limit of large 3-volume.

YM/QCD: m = 0, µ = 0: Gross, Pisarski, Yaffe
(Rev.Mod.Phys.53:43,1981),

⋆ Bad: Have to be in the limit of high temperatures (or small S
1)

◮ S3 × S1, small S3:
⋆ Good: Allows study at any temperature (or any S

1).

YM/N= 4 SYM: Aharony, Marsano, Minwalla, Papadodimas,
Van Raamsdonk (hep-th/0310285 (JHEP)),

⋆ Bad: Must be in small 3-volume. Well-defined transitions do not occur
for finite N.



1-loop effective action
Following [Aharony et al (hep-th/0310285)] the effective action of the

Polyakov line order parameter P = Pe
R β

0
dt A0(x) = diag{e iθ1 , ..., e iθN } is

S(P) = − log Z (P)

=

∞
∑

n=1

1

n
(1 − zb(nβ/R)) TrAPn

+

∞
∑

n=1

(−1)n

n
Nf zf (nβ/R ,mR)

[

enβµ
TrFPn + e−nβµ

TrFP†n
]

,

where β = 1/T , R = RS3, m = quark mass,

zb(β/R) =
∑∞

ℓ=1 d
(v ,T )
ℓ e−βε

(v,T )
ℓ = 2

∞
∑

ℓ=1

ℓ(ℓ+ 2)e−nβ(ℓ+1)/R

zf (β/R ,mR) =
∑∞

ℓ=1 d
(f )
ℓ e−βε

(f ,m)
ℓ = 2

∞
∑

ℓ=1

ℓ(ℓ+ 1)e
−β

q

(ℓ+ 1
2
)2+m2R2/R

For the pure Yang-Mills theory the weak-coupling analogue of the
deconfinement transition temperature was calculated in the large N limit:
TdR ≃ 0.759 or βd/R ≃ 1.317 [Aharony et al (hep-th/0310285)].



Fermion number at low T (N = 3, Nf = 1, mR = 0)
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The fermion number expectation
value for QCD on S1×S3 (low T)
is

N =
1

β

(

∂ lnZ

∂µ

)

=
−1

βZ

∫

[dθ] e−S

(

∂S

∂µ

)

N −−−→
β→∞

2Nf

Z

∫

[dθ] e−S
∞
∑

l=1

N
∑

i=1

l(l + 1)

[

eβµ

eβµ + e−iθi+β(l+1/2)/R

]

The level structure results from the Fermi-Dirac distribution function

obtained in the µ-derivative.



Polyakov lines at low T (N = 3, Nf = 1, mR = 0)
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Each level transition in the fermion num-
ber corresponds to a spike in P1 and
P−1:

P1 = 〈TrP〉 ≡

∫

[dθ]e−S
∑N

i=1 e iθi

Z
,

P−1 = 〈TrP†〉 ≡

∫

[dθ]e−S
∑N

i=1 e−iθi

Z
.

P1 6= P∗
−1 for non-zero µ.

As µ increases the
peaks of P1 and P−1

get wider indicating
that the regions of de-
confinement become
larger with increasing
µ.
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N = ∞ theory at low T

In the large N limit the saddle point method is valid and it is possible to
solve for several observables analytically. Considering a single level
transition in the low T limit and performing the sum over n the action
reduces to

S(θi) = −
1

2

N
∑

i ,j=1

log sin2

(

θi − θj
2

)

+ N

N
∑

i=1

V (θi)

V (θ) = iN θ − σ log
(

1 + ξe iθ
)

N is a Lagrange multiplier necessary to satisfy the detP = 1
constraint:

∑N
i=1 θi = 0.

σ ≡ σl ≡ 2l(l + 1) N
Nf

ξ ≡ exp (β(µ− ε))

ε ≡ εl ≡
√

m2 + (l + 1/2)2R−2



Large N formalism
As µ increases from 0 the Polyakov line eigenvalues are continuously
distributed along a closed contour C in the z-plane up to some critical
value when a gap opens up. It is useful to consider a map into the
complex z-plane of the Polyakov line eigenvalues:

1

N

N
∑

i=1

−→

∫ π

−π

ds

2π
=

∫

C

dz

2πi
̺(z) .

The contour C on which the Polyakov line eigenvalues lie is given by the
inverse map z(s), which can be obtained by solving

i
ds

dz
= ̺(z).

The distribution must satisfy the normalization condition
∫

C

dz

2πi
̺(z) = 1

and the det P = 1 constraint
∫

C

dz

2πi
̺(z) log z = 0.



Equation of Motion for Polyakov line eigenvalues
The EOM found from taking ∂S/∂θi = 0 has the integral form

zV ′(z) = P

∫

C

dz ′

2πi
̺(z ′)

z + z ′

z − z ′
, zV ′(z) = N −

σξz

1 + ξz
.

where P indicates principal value and closing the contour allows for
evaluation of the right-hand side using Cauchy’s theorem. In the confined
phase the most general form of the density allowed by the EOM is then:

̺(z) =
c1

z
+

c2σξ

1 + ξz
∝ V ′(z).

For the deconfined (gapped) phase the resolvent is defined by

ω(z) = −
1

N

∑

j

z + zj

z − zj
= −

∫

C

dz ′

2πi
̺(z ′)

z + z ′

z − z ′

and the contour must be peeled off the distribution to enclose the
surrounding poles. The spectral density ̺(z) can then be obtained from

z̺(z) =
1

2

[

ω(z + ǫ) − ω(z − ǫ)
]

, z ∈ C .

by collecting residues and applying the normalization condition.



Effective fermion number N at a level transition
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Adding the ∂S/∂θi for all the θis we
find that the Lagrange multiplier is

N −−−−→
N→∞

1

N

∑

i

σξzi

1 + ξzi
=

T

N2

∂ log Z

∂µ

which is the effective fermion num-
ber, N = N /N2, valid in the large
N limit.

Notice : As ξ → 0 N → 0,

As ξ → ∞ N → σ.

The confining regions with levels at N = 0 and N = σ are separated by
3rd order phase transitions from the deconfined region where N is found
by applying the detP = 1 constraint to obtain

ξ =
(σ −N )σ−N (1 + N )1+N

NN (1 + σ −N )1+σ−N
.



Polyakov lines P1, P−1 at a level transition
The density of Polyakov line eigenvalues ̺(z) can be obtained from the
EOM and allows for calculation of the Polyakov lines P1, P−1 as a
function of µ.
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log(ξ1) log(ξ2) The Polyakov lines in the con-
fined and deconfined regions are
obtained from

P1 =

∫

C

dz

2πi
̺(z)z ,

P−1 =

∫

C

dz

2πi
̺(z)

1

z
.

As ξ increases : P1 = 0 ,
N

σ + 1 −N

1

ξ
,

σ

ξ
.

P−1 = σξ ,
σ −N

1 + N
ξ , 0 .



Distribution of Polyakov line eigenvalues at level transitions
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The distribution z(s) of the eigen-
values of the Polyakov line is
found by inversion of i ds

dz
= ̺(z).

In the confined phase (red, green)

e is = z(1+ξz)σ , e is =
z1+σξσ

(1 + ξz)σ
,

respectively. In the deconfined
phase (blue) the distribution has
a gap corresponding to zeros in

̺(z) =
f (z)

z

√

(z − z̃)(z − z̃∗) ,

where z̃ , z̃∗ are the endpoints of
the distribution and

f (z) =
σ

(1 + ξz)
∣

∣

1
ξ + z̃

∣

∣

.



Phase diagram in the (µR, TR)-plane in the large N limit

for mR = 0
Considering multiple levels allows for
calculation of the boundaries of the
confining regions as a function of tem-
perature and chemical potential. The
potential is:

V (θ) = iN θ −
∑

ℓ

σℓ log
(

1 + ξℓe
iθ

)

So the density is generalized to

̺(z) =
N + 1

z
−

∑

κ≤ℓ

ξκσκ
1 + ξκz

+
∑

κ>ℓ

ξκσκ
1 + ξκz

.

The zeros of ̺(z) determine the z values at which a gap forms. These are
plugged into i ds

dz
= ̺(z), in the form

e is = z

∏

κ>ℓ(1 + ξκz)σκ

∏

κ≤ℓ((ξκz)−1 + 1)σκ
,

which will then give the critical lines in the (µR ,TR)-plane.



Preliminary lattice results from 2-color QCD

Simulation results for N = 2 QCD confirm the level structure of the
fermion number and the associated spikes in the Polyakov line at each
level transition. The curious smooth → sharp feature of the observables at
the transitions needs study to determine if it is a result of larger coupling,
or perhaps a result of working on the 4-torus.



Conclusions

QCD at non-zero chemical potential on S1 × S3 has a complex action
which results in the stationary solution lying in the configuration
space of complexified gauge fields.

The fermion number exhibits a level structure as a function of the
chemical potential and spatial extent in the low temperature limit.

The level transitions in the fermion number correspond to spikes in
the Polyakov lines such that deconfinement takes place only during a
level transition.



Outlook

Consider higher loop corrections to obtain effects from increased
coupling strength and go beyond the Gaussian approximation in the
1/N expansion.

Formulate a related theory from the gravity side (eg. N = 4 SYM +
fundamental flavor branes and chemical potential).

Perform a lattice calculation of Yang-Mills theory / QCD on S1 × S3

to determine the phase diagram as a function of the spatial volume??
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