QCD with chemical potential in a small hyperspherical box

Simon Hands, Timothy J. Hollowood, and Joyce C. Myers

Swansea University

based on arXiv:1003.5813

prepared for the

Lattice 2010 Conference in Sardinia

15 June 2010

Outline

- Motivation of the formulation of QCD at non-zero quark chemical potential on $S^1 \times S^3$ using perturbation theory.
- Action of QCD on $S^1 \times S^3$ and results for the fermion number and Polyakov lines for N = 3 at low temperature and zero quark mass.
- $N = \infty$ theory and results for fermion number and Polyakov lines and resulting phase diagram.
- Preliminary N = 2 lattice results.

Partition Function of QCD

The partition function of QCD at finite temperature $T = 1/\beta$, for N_f quark flavors, each with a mass m_f and coupled to a chemical potential μ_f is:

$$Z_{QCD} = \int {\cal D} A {\cal D} ar{\psi} {\cal D} \psi e^{-\int_0^eta d au \int d^3 {f x} {\cal L}_{QCD}}$$

where ψ and $\bar{\psi}$ are the fundamental and anti-fundamental fermion fields, respectively, and A is the SU(N) gauge field, $A_{\mu} = A_{\mu}^{a}T^{a}$.

The Lagrangian is

$$\mathcal{L}_{QCD} = \frac{1}{4g^2} \text{Tr}_F \left(F_{\mu\nu} F_{\mu\nu} \right) + \sum_{f=1}^{N_f} \bar{\psi}_f \left(\not{\!\!D}_F(A) - \gamma_0 \mu_f + m_f \right) \psi_f,$$

with covariant derivative

$$D_{\mu}(A) \equiv \partial_{\mu} - A_{\mu}.$$

What makes QCD at non-zero μ so difficult? The Sign Problem:

QCD at finite quark chemical potential μ has a complex action:

$$\begin{split} e^{S_{f}} &= \exp \int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\int_{0}^{\beta}d\tau \int d^{3}\mathbf{x}\bar{\psi}\left(\mathcal{D}_{F}(A) - \gamma_{0}\mu + m\right)\psi} \\ &= \log \det \left(\mathcal{D}_{F}(A) - \gamma_{0}\mu + m\right) \sim \sum_{n=1}^{\infty} \left[e^{n\beta\mu}e^{i\theta_{i}n} + e^{-n\beta\mu}e^{-i\theta_{i}n}\right] \end{split}$$

- The boltzmann weight e^{-S} is complex so it is not possible to perform lattice simulations which use importance sampling.
- The sign problem also complicates large N analysis: In the large N limit the saddle point approximation becomes valid, but the stationary point of a complex action with respect to the angles of the Polyakov line $P = \mathscr{P}e^{\int_0^\beta \mathrm{d}t A_0(x)} = \mathrm{diag}\{e^{i\theta_1}, ..., e^{i\theta_N}\}$ lies in the space where the angles are complex. Therefore the eigenvalues of the Polyakov line lie off the unit circle on an arc in the complex plane.
- \implies Need to generalize our techniques to handle a complex action.

Region of validity of 1-loop calculations

Properties of SU(N) gauge theories on $S^1 \times S^3$

- Valid for $\min[R_{S^1}, R_{S^3}] \ll \Lambda_{QCD}^{-1}$
 - $\mathbb{R}^3 \times S^1$, small S^1 :
 - ★ Good: Allows study at any N and in the limit of large 3-volume.
 YM/QCD: m = 0, μ = 0: Gross, Pisarski, Yaffe (Rev.Mod.Phys.53:43,1981),
 - * Bad: Have to be in the limit of high temperatures (or small S^1)
 - $S^3 \times S^1$, small S^3 :
 - ★ Good: Allows study at any temperature (or any S¹).
 YM/N= 4 SYM: Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk (hep-th/0310285 (JHEP)),
 - * Bad: Must be in small 3-volume. Well-defined transitions do not occur for finite N.

1-loop effective action

Following [Aharony et al (hep-th/0310285)] the effective action of the Polyakov line order parameter $P = \mathscr{P}e^{\int_0^\beta \mathrm{d}t A_0(x)} = \mathrm{diag}\{e^{i\theta_1}, ..., e^{i\theta_N}\}$ is $S(P) = -\log Z(P)$

$$=\sum_{n=1}^{\infty}\frac{1}{n}\left(1-z_{b}(n\beta/R)\right)\operatorname{Tr}_{A}P^{n}$$

$$+\sum_{n=1}^{\infty}\frac{(-1)^n}{n}N_f z_f(n\beta/R,mR)\left[e^{n\beta\mu}\mathrm{Tr}_F P^n+e^{-n\beta\mu}\mathrm{Tr}_F P^{\dagger n}\right],$$

where $\beta=1/\mathit{T}$, $\mathit{R}=\mathit{R}_{\mathit{S}^3}$, $\mathit{m}=$ quark mass,

$$z_{b}(\beta/R) = \sum_{\ell=1}^{\infty} d_{\ell}^{(v,T)} e^{-\beta \varepsilon_{\ell}^{(v,T)}} = 2 \sum_{\ell=1}^{\infty} \ell(\ell+2) e^{-n\beta(\ell+1)/R}$$
$$z_{f}(\beta/R, mR) = \sum_{\ell=1}^{\infty} d_{\ell}^{(f)} e^{-\beta \varepsilon_{\ell}^{(f,m)}} = 2 \sum_{\ell=1}^{\infty} \ell(\ell+1) e^{-\beta \sqrt{(\ell+\frac{1}{2})^{2} + m^{2}R^{2}/R}}$$

For the pure Yang-Mills theory the weak-coupling analogue of the deconfinement transition temperature was calculated in the large N limit: $T_d R \simeq 0.759$ or $\beta_d/R \simeq 1.317$ [Aharony et al (hep-th/0310285)].

Fermion number at low T (N = 3, $N_f = 1$, mR = 0)

The level structure results from the Fermi-Dirac distribution function obtained in the μ -derivative.

Polyakov lines at low T (N = 3, $N_f = 1$, mR = 0)

$N = \infty$ theory at low T

In the large N limit the saddle point method is valid and it is possible to solve for several observables analytically. Considering a single level transition in the low T limit and performing the sum over n the action reduces to

$$S(\theta_i) = -\frac{1}{2} \sum_{i,j=1}^{N} \log \sin^2 \left(\frac{\theta_i - \theta_j}{2}\right) + N \sum_{i=1}^{N} V(\theta_i)$$
$$V(\theta) = i\mathcal{N}\theta - \sigma \log \left(1 + \xi e^{i\theta}\right)$$

- N is a Lagrange multiplier necessary to satisfy the det P = 1 constraint: Σ^N_{i=1} θ_i = 0.
- $\sigma \equiv \sigma_I \equiv 2I(I+1)\frac{N}{N_f}$

•
$$\xi \equiv \exp(\beta(\mu - \varepsilon))$$

• $\varepsilon \equiv \varepsilon_I \equiv \sqrt{m^2 + (I + 1/2)^2 R^{-2}}$

Large N formalism

As μ increases from 0 the Polyakov line eigenvalues are continuously distributed along a closed contour C in the *z*-plane up to some critical value when a gap opens up. It is useful to consider a map into the complex *z*-plane of the Polyakov line eigenvalues:

$$\frac{1}{N}\sum_{i=1}^{N} \longrightarrow \int_{-\pi}^{\pi} \frac{ds}{2\pi} = \int_{\mathcal{C}} \frac{dz}{2\pi i} \varrho(z) \; .$$

The contour C on which the Polyakov line eigenvalues lie is given by the inverse map z(s), which can be obtained by solving

$$i\frac{ds}{dz}=\varrho(z).$$

The distribution must satisfy the normalization condition

$$\int_{\mathcal{C}} \frac{dz}{2\pi i} \varrho(z) = 1$$

and the det P = 1 constraint

$$\int_{\mathcal{C}} \frac{dz}{2\pi i} \varrho(z) \log z = 0.$$

Equation of Motion for Polyakov line eigenvalues The EOM found from taking $\partial S/\partial \theta_i = 0$ has the integral form

$$zV'(z) = \mathfrak{P}\int_{\mathcal{C}} rac{dz'}{2\pi i} \, \varrho(z') rac{z+z'}{z-z'} \,, \qquad zV'(z) = \mathcal{N} - rac{\sigma\xi z}{1+\xi z}$$

where \mathfrak{P} indicates principal value and closing the contour allows for evaluation of the right-hand side using Cauchy's theorem. In the confined phase the most general form of the density allowed by the EOM is then:

$$\varrho(z) = rac{c_1}{z} + rac{c_2\sigma\xi}{1+\xi z} \propto V'(z).$$

For the deconfined (gapped) phase the resolvent is defined by

$$\omega(z) = -\frac{1}{N} \sum_{j} \frac{z+z_j}{z-z_j} = -\int_{\mathcal{C}} \frac{dz'}{2\pi i} \varrho(z') \frac{z+z'}{z-z'}$$

and the contour must be peeled off the distribution to enclose the surrounding poles. The spectral density $\rho(z)$ can then be obtained from

$$z \varrho(z) = rac{1}{2} [\omega(z+\epsilon) - \omega(z-\epsilon)] \;, \quad z \in \mathcal{C} \;.$$

by collecting residues and applying the normalization condition.

Effective fermion number $\mathcal N$ at a level transition

Adding the $\partial S / \partial \theta_i$ for all the θ_i s we find that the Lagrange multiplier is

$$\mathcal{N} \xrightarrow[N \to \infty]{} \frac{1}{N} \sum_{i} \frac{\sigma \xi z_{i}}{1 + \xi z_{i}} = \frac{T}{N^{2}} \frac{\partial \log Z}{\partial \mu}$$

which is the effective fermion number, $\mathcal{N}=\mathcal{N}/N^2$, valid in the large N limit.

 $\begin{array}{lll} \text{Notice}: & & \text{As} \quad \xi \to \mathbf{0} & & \mathcal{N} \to \mathbf{0}, \\ & & \text{As} \quad \xi \to \infty & & \mathcal{N} \to \sigma. \end{array}$

The confining regions with levels at $\mathcal{N} = 0$ and $\mathcal{N} = \sigma$ are separated by 3rd order phase transitions from the deconfined region where \mathcal{N} is found by applying the det P = 1 constraint to obtain

$$\xi = \frac{(\sigma - \mathcal{N})^{\sigma - \mathcal{N}} (1 + \mathcal{N})^{1 + \mathcal{N}}}{\mathcal{N}^{\mathcal{N}} (1 + \sigma - \mathcal{N})^{1 + \sigma - \mathcal{N}}} .$$

Polyakov lines \mathscr{P}_1 , \mathscr{P}_{-1} at a level transition

The density of Polyakov line eigenvalues $\varrho(z)$ can be obtained from the EOM and allows for calculation of the Polyakov lines \mathcal{P}_1 , \mathcal{P}_{-1} as a function of μ .

As ξ increases : $\mathscr{P}_1 = 0$,

$$\mathscr{P}_{-1} = \sigma \xi \ ,$$

The Polyakov lines in the confined and deconfined regions are obtained from

$$\mathcal{P}_{1} = \int_{\mathcal{C}} \frac{dz}{2\pi i} \varrho(z) z ,$$
$$\mathcal{P}_{-1} = \int_{\mathcal{C}} \frac{dz}{2\pi i} \varrho(z) \frac{1}{z} .$$

0

 $\frac{\mathcal{N}}{\sigma + 1 - \mathcal{N}} \frac{1}{\xi} , \\ \frac{\sigma - \mathcal{N}}{1 + \mathcal{N}} \xi ,$

Distribution of Polyakov line eigenvalues at level transitions

The distribution z(s) of the eigenvalues of the Polyakov line is found by inversion of $i\frac{ds}{dz} = \varrho(z)$. In the confined phase (red, green)

$$e^{is}=z(1{+}\xi z)^{\sigma}\,,\quad e^{is}=rac{z^{1+\sigma}\xi^{\sigma}}{(1+\xi z)^{\sigma}},$$

respectively. In the deconfined phase (blue) the distribution has a gap corresponding to zeros in

$$\varrho(z)=\frac{f(z)}{z}\sqrt{(z-\tilde{z})(z-\tilde{z}^*)}\;,$$

where \tilde{z} , \tilde{z}^* are the endpoints of the distribution and

$$f(z) = \frac{\sigma}{(1+\xi z)\left|\frac{1}{\xi}+\tilde{z}\right|}$$

Phase diagram in the $(\mu R, TR)$ -plane in the large N limit for mR = 0Considering multiple levels allows for

The zeros of $\rho(z)$ determine the z values at which a gap forms. These are plugged into $i\frac{ds}{dz} = \rho(z)$, in the form

$$e^{is} = z rac{\prod_{\kappa > \ell} (1+\xi_\kappa z)^{\sigma_\kappa}}{\prod_{\kappa \leq \ell} ((\xi_\kappa z)^{-1}+1)^{\sigma_\kappa}} \; ,$$

which will then give the critical lines in the $(\mu R, TR)$ -plane.

$N_{e}=N_{e}=2, 3^{3}x64$ lattice β=24.0, κ=0.124 n/n_{sat} 0.8 --- Polvakov line 38 0.6 22 0.4 16 0.2 8 1.8 1.2 1.4 1.6 2 u

Preliminary lattice results from 2-color QCD

Simulation results for N = 2 QCD confirm the level structure of the fermion number and the associated spikes in the Polyakov line at each level transition. The curious smooth \rightarrow sharp feature of the observables at the transitions needs study to determine if it is a result of larger coupling, or perhaps a result of working on the 4-torus.

Conclusions

- QCD at non-zero chemical potential on S¹ × S³ has a complex action which results in the stationary solution lying in the configuration space of complexified gauge fields.
- The fermion number exhibits a level structure as a function of the chemical potential and spatial extent in the low temperature limit.
- The level transitions in the fermion number correspond to spikes in the Polyakov lines such that deconfinement takes place only during a level transition.

Outlook

- Consider higher loop corrections to obtain effects from increased coupling strength and go beyond the Gaussian approximation in the 1/N expansion.
- Formulate a related theory from the gravity side (eg. N = 4 SYM + fundamental flavor branes and chemical potential).
- Perform a lattice calculation of Yang-Mills theory / QCD on $S^1 \times S^3$ to determine the phase diagram as a function of the spatial volume??