A study of the XY model at finite chemical potential using complex Langevin dynamics

Frank James Swansea University

17 June 2010

Frank James Swansea University A study of the XY model at finite chemical potential using comp

- Motivation: finite chemical potential and complex actions
- Complex Langevin dynamics
- Problems since 1980s
 - Instabilities
 - Incorrect convergence
- XY model
 - Why?
 - Adaptive stepsize and runaways
 - Convergence issues
- Diagnostic tests
- Outlook

• Adding chemical potential makes action complex

$$S^*(\mu) = S(-\mu^*)$$

• QCD: Fermion determinant complex

$$[\det M(\mu)]^* = \det M(-\mu^*)$$

- Difficult to treat nonperturbatively
- Can't interpret weight $e^{-S} = \left| e^{-S} \right| e^{i arphi}$ as a probability

Sign problem

How to deal with complex phase $e^{i\varphi}$?

• Ignore it (phase quenched approximation)

$$Z_{\mathsf{pq}} = \int D\phi \left| e^{-S} \right|$$

- Problem: not sampling from correct distribution
- Different physics
- Apply reweighting
 - Problem: Reweighting fails if $\langle e^{i arphi}
 angle_{
 m pq} \sim 0$
 - But phase vanishes exponentially in thermodynamic limit (Ω volume)

$$\langle e^{i\varphi}
angle_{
m pq} = rac{Z}{Z_{
m pq}} \sim e^{-\Omega \Delta f}$$

Need alternative approach

Parisi & Wu, '81

伺い イラト イラト ニラ

- Classical field equation $\frac{\delta S[\phi]}{\delta \phi} = 0$
- Add fictitious time dimension ϑ , $\phi \to \phi(\vartheta)$
- Random kicks add fluctuations
- Equation of motion Langevin equation

$$rac{\partial \phi}{\partial artheta} = -rac{\delta \mathcal{S}}{\delta \phi} + \eta(artheta)$$

• Uncorrelated noise $\langle \eta(\vartheta) \rangle = 0$, $\langle \eta(\vartheta) \eta(\vartheta') \rangle = 2\delta(\vartheta - \vartheta')$

- Formal proof of stable distribution
- Equilibrium probability distribution $ho[\phi] \sim e^{-S[\phi]}$
- Noise averages equal to expectation values in limit $artheta
 ightarrow\infty$

$$\lim_{\vartheta \to \infty} \langle O(\phi) \rangle_{\eta} = \frac{1}{Z} \int D\phi O(\phi) e^{-S[\phi]}$$

• No importance sampling

Complex Langevin dynamics

- What if $S[\phi]$ complex?
- Drift term becomes complex

$$\frac{\delta S}{\delta \phi} = \mathsf{Re} \frac{\delta S}{\delta \phi} + i \mathsf{Im} \frac{\delta S}{\delta \phi}$$

• All field variables complexify into expanded complex space

$$\phi \to \phi^{\rm R} + i\phi^{\rm I}$$

- Also for observables $\langle {\cal O}(\phi)
 angle o \langle {\cal O}(\phi^{
 m R}+i\phi^{
 m I})
 angle$
- Distribution extends into complexified space, no formal proof of convergence

$$\rho[\phi] \to P[\phi^{\mathrm{R}}, \phi^{\mathrm{I}}]$$

Parisi, Klauder '83

Complexified numerical updates

- Discretize Langevin time $\vartheta = n\epsilon$
- Force terms

$$\mathcal{K}^{\mathrm{R}} = -\operatorname{Re} \left. \frac{\delta \mathcal{S}}{\delta \phi} \right|_{\phi \to \phi^{\mathrm{R}} + i\phi^{\mathrm{I}}} \quad \mathcal{K}^{\mathrm{I}} = -\operatorname{Im} \left. \frac{\delta \mathcal{S}}{\delta \phi} \right|_{\phi \to \phi^{\mathrm{R}} + i\phi^{\mathrm{I}}}$$

• Langevin equation of motion

$$egin{aligned} \phi^{\mathrm{R}}(n+1) =& \phi^{\mathrm{R}}(n) + \epsilon \mathcal{K}^{\mathrm{R}}(n) + \sqrt{\epsilon} \eta(n) \ \phi^{\mathrm{I}}(n+1) =& \phi^{\mathrm{I}}(n) + \epsilon \mathcal{K}^{\mathrm{I}}(n) \end{aligned}$$

• Real noise $\langle \eta(n) \rangle = 0$ $\langle \eta(n) \eta(n') \rangle = 2 \delta_{n,n'}$

Problems since eighties

- No formal proof of convergence to correct distribution e^{-S}
- Runaway solutions and instabilities
 - Solved using an adaptive stepsize
- Convervence to incorrect result
 - This work
 - Also recent studies with complex noise
- Also expected to be present in QCD
- XY model:
 - Both features present
 - Easier to simulate than QCD
 - Reformulation without sign problem (world line method) Banerjee

& Chandrasekharan, 2010

Ambjorn et al '86

Ambjorn et al '86

伺 ト イ ヨ ト イ ヨ ト

• Each site x associtate an angle $\phi \in [0, 2\pi)$

$$S = -\beta \sum_{x} \sum_{\nu=0}^{2} \cos(\phi_{x} - \phi_{x+\hat{\nu}} - i\mu\delta_{\nu,0})$$

- Chemical potential couples to symmetry $\phi \rightarrow \phi + \alpha$
- Well understood at $\mu = 0$:
 - Phase transition at $\beta_c = 0.454$
 - $\beta > \beta_c$ ordered phase (spins aligned)
 - $\beta < \beta_c$ disordered phase

• Complexified force terms unbounded

$$\begin{split} \mathcal{K}_{x}^{\mathrm{R}} &= -\beta \sum_{\nu} \sin(\phi_{x}^{\mathrm{R}} - \phi_{x+\hat{\nu}}^{\mathrm{R}}) \cosh(\phi_{x}^{\mathrm{I}} - \phi_{x+\hat{\nu}}^{\mathrm{I}} - \mu \delta_{\nu,0}) + \\ & \sin(\phi_{x}^{\mathrm{R}} - \phi_{x-\hat{\nu}}^{\mathrm{R}}) \cosh(\phi_{x}^{\mathrm{I}} - \phi_{x-\hat{\nu}}^{\mathrm{I}} + \mu \delta_{\nu,0}) \\ \mathcal{K}_{x}^{\mathrm{I}} &= -\beta \sum_{\nu} \cos(\phi_{x}^{\mathrm{R}} - \phi_{x+\hat{\nu}}^{\mathrm{R}}) \sinh(\phi_{x}^{\mathrm{I}} - \phi_{x+\hat{\nu}}^{\mathrm{I}} - \mu \delta_{\nu,0}) + \\ & \cos(\phi_{x}^{\mathrm{R}} - \phi_{x-\hat{\nu}}^{\mathrm{R}}) \sinh(\phi_{x}^{\mathrm{I}} - \phi_{x-\hat{\nu}}^{\mathrm{I}} + \mu \delta_{\nu,0}) \end{split}$$

 $\bullet~{\rm When}~\mu={\rm 0}$, $\phi^{\rm I}={\rm 0}$

$$\left| K^{\mathrm{R}} \right| \leq 6\beta \quad K^{\mathrm{I}} = 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Aarts, FJ, Seiler, Stamatescu, PLB hep-lat/09120617

- Long known that sometimes ϕ^{I} goes to infinity
- Extra imaginary dimension ϕ^{I} unbounded \Rightarrow Forces can "blow up"
- Classical flow diagram of (K^{R}, K^{I}) shows fixed points and unstable directions
- Random kicks can send ϕ^{I} along these to infinity

Classical flow example

6 2 _¢_ X -2 -6 -3 -2 3 -1 2 ¢^R

- Recently observed that reduction in ϵ almost eliminates runaways Berges & Stamatescu 2005
- Problem appears when product ϵK large
- Solution: reduce ϵ when large force $K^{\max} = \max_{x} |K_{x}^{R} + iK_{x}^{I}|$
- Take

$$\epsilon_n = \bar{\epsilon} \frac{\langle K^{\max} \rangle}{K_n^{\max}}$$

- With $\bar{\epsilon}$ given, $\langle {\cal K}^{\rm max} \rangle$ precomputed/computed during thermalisation
- Similar algorithm implemented with heavy dense QCD
- All cases tested, completely eliminates runaway solutions

伺 ト イ ヨ ト イ ヨ ト

 $\Omega = 4^3$

Frank James Swansea University A study of the XY model at finite chemical potential using comp

 $\Omega = 10^3$

Frank James Swansea University A study of the XY model at finite chemical potential using comp

 $\Omega = 16^3$

Frank James Swansea University A study of the XY model at finite chemical potential using comp

Frank James Swansea University A study of the XY model at finite chemical potential using comp

- Known since '80s that complex Langevin can converge to "wrong" value
 Ambjorn et al '86
- Recent studies using complex noise found correct convergence only when noise purely real
 Aarts et al hep-lat/0912.3360
- Strategy: compare $\langle S \rangle$ with known results Aarts & FJ hep-lat/1005.3468
 - Small $\mu:$ take imaginary chemical potential, continue over $\mu^2 \sim 0$
 - Comparison with alternative result: world line method Banerjee & Chandrasekharan

Imaginary chemical potential

- Choose $\mu = i\mu_I$
- Action becomes

$$\mathcal{S} = -eta \sum_{\mathbf{x},
u} \cos(\phi_{\mathbf{x}} - \phi_{\mathbf{x} + \hat{
u}} + \mu_I \delta_{
u, \mathbf{0}})$$

- Action now real
- Standard techniques can apply
- Can shift μ_I to boundry conditions
- Roberge-Weiss transition at $\mu_I = \pi/N_{ au}$

Banerjee, Chandrasekhran hep-lat/1001.3648

- Rewrite original action
- Make a duality transform of field variables
- Circumvents sign problem
- Efficiently solved with worm algorithm

$\beta = 0.7$ ordered phase

Frank James Swansea University A study of the XY model at finite chemical potential using comp

$\beta = 0.5$ transition region

$\beta = 0.3$ disordered phase

Frank James Swansea University A study of the XY model at finite chemical potential using comp

- XY model at $\mu = 0$ critical coupling $\beta_c = 0.454$
- Phase transition extends into (β, μ) plane
- Strong correlation between failure and disordered phase
- Phase diagram computed using world line method
- Compute $\langle S
 angle$ using both methods over (eta,μ)
- Measure ratio of action with CL and WL

$$\Delta S = \frac{S_{wl} - S_{cl}}{S_{wl}}$$

Convergence and phase diagram

When $\mu = 0$:

- $\bullet\,$ Dynamics must be different at high and low $\beta\,$
- Compare ensembles generated from two different initial conditions:
 - Cold start $\phi^{\rm I}={\rm 0}$
 - $\bullet~{\rm Hot}~{\rm start}~\phi^{\rm I}~{\rm random}$

- real dynamics complex dynamics
- Recall: ${\cal K}^{\rm I} \sim {
 m sinh}(\Delta \phi^{\rm I})$ and only real noise
 - $\Rightarrow~$ Configurations with a cold start stay $\phi^{\rm I}=$ 0 always
- Ensembles from a hot start lie immediately in complex plane
- Should converge to same result

- Forces in complex dynamics not driving configuration to correct solution
- Idea: compute distribution of force terms K^{\max}
- Compare distribution for different β at $\mu = 0$
- Should identify differences in dynamics
- Recall: $K \leq 6\beta$ with real dynamics

Frank James Swansea University A study of the XY model at finite chemical potential using comp

* 注 > * 注 >

A ►

æ

Frank James Swansea University A study of the XY model at finite chemical potential using comp

注入 不注入

P

æ

Frank James Swansea University A study of the XY model at finite chemical potential using comp

★ 臣 ▶ | ★ 臣 ▶

A ►

æ

Frank James Swansea University A study of the XY model at finite chemical potential using comp

э

э

Frank James Swansea University A study of the XY model at finite chemical potential using comp

э

э

- Crossover region $\beta \sim \beta_{\rm c}$ has both types
- Correlated with phase of theory (disordered phase)
- But not with sign problem, there is no sign problem at $\mu = 0$
- Dynamics alone drive configuration to wide distribution in complex plane
- Similar effect found with studies using complex noise

Not due to sign problem

- Two old problems encountered
- Runaways eliminated with adaptive stepsize
- Greater insight into incorrect convergence from $\mu={\rm 0}$ hot/cold starts
- Problem is subtle, depends on phase of theory
- Caused by dynamics not driving to correct configuation
- Similar features to other simple models using complex noise

But not caused by sign problem