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@ a numerical problem: heavy quark propagators decay too fast!

o the free theory case

o the interacting case

@ anumerical trick: heavy quark propagators decay as slow as light quark propagators
o the free theory case

o the interacting case

o different preconditioning

@ the same numerical trick: speeding up numerical inversions for light quark



a numerical problem: heavy quark propagators decay too fast!

first principle approaches to flavour physics are of fundamental importance in the search for physics beyond the
Standard Model

in order to calculate heavy flavour observables on the lattice we need to solve the linear system

(D + M) ¢ = n¥0

on the one hand, the numerical inversion is quite fast for

heavy quarks
n—n-+1

apply (D + M) afew times...
on the other hand, at large times the solution is poorly

accurate because |1 (xp; X) | may become much smaller
than r for xo > yo

a bit of linear algebra . ..

© 06 o o

checkif |(D 4+ M) y™ —n¥0| < r




a numerical problem: free theory
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c(t) = —tr{s(o, t)st (t,0)}
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@ this is a heavy-heavy “pseudoscalar-pseudoscalar” correlator in free theory
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9 we do expect that if we choose a “loose” residue something should go wrong at large time distances from the

source ...

@ in this particular case we can compare the numerical inversion performed with the loose residue r = 10~6 with
the one performed with the “small” residue r = 10~ 1!



a numerical problem: free theory
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a numerical problem: free theory

Mpp(t)
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O by changing a bit the quark mass the effect may become “particularly” evident

@ in this work we have analyzed situations in which the problem can be easily identified and such that “exact”
results can be obtained by working with double precision architectures

@ we have been working with loose residues r ~ 10~ also because this is the best one can do with single precision
architectures (presently GPU are much faster in single precision)



a numerical problem: interacting theory

Mpp(t)
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@ here we see the same effect in the interacting theory. ..
@ simulation details: 3 = 5.3, kseq = 0.13625, amgeq ~ 0.07, amy, ~ 0.35

O fthis correspond to the CLS gauge ensamble E5 (and we thank our CLS colleagues for sharing the effort of the
generation of these gauge configurations)



a numerical frick: heavy quark propagators decay as slow as light quark propagators

in order to solve this numerical problem we propose to precondition the preferred lattice Dirac operator as follows

(X, x0) —  alx) x(¥,x)

a(0) x(e,0)

a(0) X(s,0)
a(1) x(e: 1)

a(1) X(e, 1)

ally - 1) X(e, Lo — 1)

this is a matrix that is diagonal in color, Dirac and space indexes and it must be invertible

D+M) $(E x) = alx) (D" +M) x(&F x)



a numerical frick: heavy quark propagators decay as slow as light quark propagators

J

one must be careful with boundary conditions

P(XT) =9(X0) —  «T)x(%T) =a0)x(%,0)

i.e. the preconditioned field satisfy the following boundary conditions

oo a0
X(X,T) = (1) X (¥, 0)

and the preconditioned operator is obtained by modifying the covariant derivatives in the time direction

Vou( = U wix+ 0 =0 — LD 0000 x(x+0) = x()

(xo — 1)

Vi) = w(x) -~ U§(x = 0) p(x = 0)  — x(x)—“a(xo) Ud (x = 0) x(x — 0)



a numerical frick: free theory

c(t) = —tr{s(0, st (t,0)}

1 :.‘AA T T T T T lA'
[ . Aa, )
1e-05 ®e AAAAAAAAAAAA AAAAAAAA‘AA‘ ® ¢
s te, B SO Laasasssnt .*®
1e-10 F ‘e, o o’
3 e, «®
r Te. i
- L ‘e .®
le-15 : ‘e, . . gaet
1e-20 | too2?
1e-25 E 1 1 1 1 1 1
0 10 20 30 40 50 60
r=10’1_1 unpreconditioned  ® =10 preconditioned 4
r=10" unpreconditioned  *
we choose:

¥ (¥, xp) — cosh [mg(xo — T/2)] x(%, %)

and, in this particular case, mg = 0.4. We calculate numerically x (¥, xp).



a numerical frick: free theory

c(t) = —tr{s(0, st (t,0)}
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we choose:

¥ (¥, xp) — cosh [mg(xo — T/2)] x(%, %)

and, in this particular case, my = 0.4. We calculate numerically x (X, xp). and offline we get ¢ (X, x)
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a numerical frick: free theory

Mpp(t)
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and, in this particular case, my = 0.4. We calculate numerically x (X, xp). and offline we get ¢ (X, x)



a numerical trick: interacting theory

Mpp(t)
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also in the inferacting case we choose:

¥ (¥, xp) — cosh [mg(xo — T/2)] x(%, %)

and my = 0.4. We calculate numerically x (X, xp). and offline we get ¢ (¥, xy)



a numerical trick: Schrédinger Functional setup

up to now we have been discussing the case of periodic boundary in the time direction

our preconditioning may be particularly relevant in the case of fixed boundary conditions in the time direction:
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a numerical frick: SF free theory

c(t) = —tr{s(0, st (t,0)}
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we choose:

$(¥,x0) — exp (moxp) x (¥, x0)

We calculate numerically x (X, xp). and offline we get v (X, xo)
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a numerical frick: SF free theory
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c(t) = —tr{s(0, st (t,0)}
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We calculate numerically x (X, xp). and offline we get v (X, xo)
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a numerical trick: different preconditioning

@ the preconditioning that we have been discussing up fo now

o it is particularly simple to implement
@ solves the large time numerical precision issue for heavy quark propagators,
o can be “removed” after having computed the correlation functions, i.e. after the contractions

@ by relaxing the last property, one can as easily as before explore several other possibilities

o extend the same trick to the other directions
@ give to the matrix o a “structure” in Dirac space

o ...

in the following we shall briefly discuss the following preconditioning:

P (Xo, X1, X, X3) — au(xp) ax(x1) a(xp) x(x3) X (X, X1, X2, X3)



a numerical trick: different preconditioning
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@ DD-fgcrinverter r = 10~ 11 unpreconditioned: 7 iterations
@ DD-fgcr inverter r = 10~ time preconditioned: 6 iterations

O DD-fgerinverter r = 10~ all-d preconditioned: 23 iteratfions
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the same numerical trick: speeding up numerical inversions for light quarks

we make light quark propagators decay faster by choosing:

»(Xo, X1, X, X3) —> (

3

I1

i=0

cosh [mo (x; — Li/2)]

1

) x (X0, X1, Xp, X3)

e} L3 xT ksea r mg iterations
D5 53 243 x 48 0.13625 10— 11 0.0 175
D5 53 243 x 48 0.13625 10— 11 0.4 141
E3 53 323 x 64 0.13605 10-10 0.0 99
E3 53 323 x 64 0.13605 10-10 02 78
E3 53 323 x 64 0.13605 10-10 0.4 69
E4 53 323 x 64 0.13610 10~ 10 0.0 115
E4 53 325 x 64 0.13610 10-10 0.2 91
E4 53 323 x 64 0.13610 10-10 0.4 81
E5 53 323 x 64 0.13625 10-10 0.0 194
E5 53 323 x 64 0.13625 10—10 0.2 153
E5 53 323 x 64 0.13625 10-10 0.4 141




conclusions & outlooks

@ we have considered a “family” of preconditionings that are easy to implement

@ that can be used to perform “flavored” quark inversions on single precision architectures (e.g. GPUs, Cell, etc.)
with the same numerical accuracy one would get on n-precision architectures

@ on double precision machines, our preconditioning can be used to speed up the calculation of light quark
propagators

@ we have demonstrated that one can easily gain up to 30% in computational time without compromising the
numerical accuracy

@ we are exploring several other possibilities with respect to the ones discussed in this talk and, in particular, giving a
Dirac “structure” to the preconditioning operator

@ such kind of preconditioning may also be useful in the HMC generation of gauge field configurations



