Longitudinal and transverse meson correlators in the deconfined phase

Gert Aarts, Chris Allton, Justin Foley[†], Simon Hands

Swansea University, Wales

† Carnegie Mellon University, Pittsburgh, USA

and

Seyong Kim

Sejong University, Seoul

from S. Hands

Particle Data Book

Particle Data Book

 $\sim 1.5 \times 10^3 \mathrm{~pages}$

Particle Data Book

 $\sim 1.5 \times 10^3 \mbox{ pages}$ zero pages on Quark-Gluon Plasma...

Do bound hadronic states persist into the "quark-gluon" plasma phase?

How can we extract transport coefficients?

Spectral functions can answer this!

$$G(t, \vec{p}) = \int \rho(\omega, \vec{p}) K(t, \omega) \, d\omega$$

$$\uparrow \qquad \qquad \downarrow \qquad \checkmark$$
Euclidean
Correlator
Euclidean
Function
Kernel

What's special about the Spectral Function?

• $\rho(\omega, \vec{p})$ contains info on

- (in)stability of hadrons
- transport coefficients
- dilepton production ...
- Extraction of a spectral density from a lattice correlator is an ill-posed problem:
 - Given G(t) derive $\rho(\omega)$
 - More ω data points then t data points!

Requires the use of Bayesian analysis -

Maximum Entropy Method (MEM)

Asakawa, Hatsuda et al

"Strange" behaviour of $\rho(\omega)$ near $\omega \sim 0$ traced to singular behaviour of $K(\omega, t)$ at $\omega = 0$:

$$\lim_{\omega \to 0} K(\omega, t) = \frac{2T}{\omega} + \mathcal{O}(\omega)$$

This is trivially corrected by defining:

$$\overline{K}(\omega, t) = \frac{\omega}{2T} K(\omega, t)$$
$$\overline{\rho}(\omega) = \frac{2T}{\omega} \rho(\omega)$$

and performing MEM on

$$G(t) = \int \overline{\rho}(\omega) \ \overline{K}(\omega, t) \ d\omega$$

Aarts, CRA, Foley, Hands & Kim, [arXiv:0703008] we used default model $\overline{m}(\omega) = m_0(b + a\omega)$

Lattice Action

- Gluon Action
 - Wilson
- Quenched, Staggered
- Twisted Boundary Conditions
 - large range of momenta available
 - able to study longitudinal and transverse correlators
- Isotropic
- Run on Undergraduate Laboratory PC's

COLD

Lattice spacings	a^{-1}	$\sim 4~{ m GeV}$
Spatial Volume	$N_s^3 \times N_t$	$48^3 \times 24$
T	$1/(aN_t)$	$T \sim 160 MeV \sim 0.62 T_c$
Statistics	N_{cfg}	~ 100

HOT

Lattice spacings	a^{-1}	$\sim 10~{\rm GeV}$
Spatial Volume	$N_s^3 \times N_t$	$64^3 \times 24$
T	$1/(aN_t)$	$T \sim 420 MeV \sim 1.5 T_c$
Statistics	N_{cfg}	~ 100

Momenta

Flynn, Juttner, Sachrajda [hep-lat/0506016]

label	$\mathbf{p}L$	p L	Longitudinal	Transverse
zaa	$(0, \ 0, \ 0)$	0	any	any
zab	$(2, \ 0, \ 0)$	2	V1	V2 & V3
zac	$(0,\ \pi,\ 0)$	π	V2	V1 & V3
mac	$(0,\ -\pi,\ 0)$	π	V2	V1 & V3
zbc	$(-2,\ \pi,\ 0)$	$\sqrt{4+\pi^2} = 3.72$	-	V3
mbc	$(-2, -\pi, 0)$	$\sqrt{4+\pi^2} = 3.72$	-	V3
zcd	$(3, 3-\pi, 3)$	$\sqrt{18 + (3 - \pi)^2} = 4.25$	-	-
zbd	$(1,\ 3,\ 3)$	$\sqrt{19} = 4.36$	-	-
mbd	$(1, 3-2\pi, 3)$	$\sqrt{10 + (3 - 2\pi)^2} = 4.56$	-	-
zad	$(3,\ 3,\ 3)$	$3\sqrt{3} = 5.20$	-	-
mad	$(3, 3-2\pi, 3)$	$\sqrt{18 + (3 - 2\pi)^2} = 5.36$	-	-
paa	$(0,\ 2\pi,\ 0)$	$2\pi = 6.28$	V2	V1 & V3
maa	$(0, \ -2\pi, \ 0)$	$2\pi = 6.28$	V2	V1 & V3
pab	$(2,\ 2\pi,\ 0)$	$2\sqrt{1+\pi^2} = 6.59$	-	V3
mab	$(2, \ -2\pi, \ 0)$	$2\sqrt{1+\pi^2} = 6.59$	-	V3
pcd	$(3, 3 + \pi, 3)$	$\sqrt{18 + (3 + \pi)^2} = 7.46$	-	-
mcd	$(3, 3-3\pi, 3)$	$3\sqrt{2 + (1 - \pi)^2} = 7.70$	-	-
pac	$(0,\ 3\pi,\ 0)$	$3\pi = 9.42$	V2	V1 & V3
pbc	$(-2, \; 3\pi, \; 0)$	$\sqrt{4+9\pi^2} = 9.63$	-	V3
pbd	$(1, 3+2\pi, 3)$	$\sqrt{10 + (3 + 2\pi)^2} = 9.81$	-	-
pad	$(3, 3+2\pi, 3)$	$\sqrt{18 + (3 + 2\pi)^2} = 10.21$	-	-

Staggered Correlators

$$G(t) = 2 \int \frac{d\omega}{2\pi} K(t,\omega) \left(\rho(\omega) - (-1)^t \widetilde{\rho}(\omega) \right)$$

 \longrightarrow Have to fit to even & odd times separately, then use

$$\rho^{\text{phys}} = \frac{1}{2} \left(\rho^{\text{even}} + \rho^{\text{odd}} \right)$$

Momentum dependence of spectral function (below T_c)

- Can see it moving
 - Above was with un-corrected MEM
 - Evidence of MEM singularity at $\omega \sim 0$

Electrical Conductivity (Old Result)

$$\frac{\sigma}{T} = \lim_{\omega \to 0} \frac{\rho(\omega)}{6\omega T}$$

 σ = Conductivity

Electrical Conductivity (Old Result)

Electrical Conductivity (Old Result)

 $\rightarrow \sigma/T = 0.4 \pm 0.1$ Aarts, CRA, Foley, Hands & Kim, [arXiv:0703008]

See also Karsch, Tuesday's talk and S. Gupta, Phys. Lett. B597, 57(2004)

Vector correlator, for pL = 0:

Vector correlator, for pL = 0, 2:

Vector correlator, for $pL = 0, 2, \pi$:

Vector correlator, for $pL = 0, 2, \pi, 2\pi$:

Vector correlator, for $pL = 0, 2, \pi, 2\pi, 3\pi$:

Longitudinal, light, hot

Longitudinal, heavy, hot

Transverse, heavy, hot

Longitudinal, light, cold

Longitudinal, heavy, cold

Т	Polarisation	m_q	$ ho(\omega ightarrow 0)$	
$1.5T_c$	Long. Tran. Long. Tran.	light light heavy heavy	$ \begin{array}{c} \neq 0 \\ \neq 0 \\ = 0 \\ = 0 \\ = 0 \end{array} $	Contradicting Hong & Teaney Agreeing with Hong & Teaney

$0.62T_c$	Long.	light	= 0
	Tran.	light	= 0
	Long.	heavy	= 0
	Tran.	heavy	= 0

 ωa

 ωa

Lack of Melting? [Preliminary]

m/T = 3 Hot Longitudinal Vector m/T = 3(ma = 0.125)(0,0,0)(2,0,0) $\rho(\omega) \,/\, (T \; \omega)$

Summary

- Have extended previous work on mesonic correlators at $T \neq 0$ to non-zero momentum
- Used twisted B.C. to access finer momentum resolution
- Found distinct difference in G(t) for longitudinal versus transverse in G(t)
- This does not correspond to difference in "transport peak", i.e. $\rho(\omega \rightarrow 0)$ behaviour
- This work performed on modest computer power
 - Runs planned on supercomputers
- Concerns about constant term in correlator from quark wrapping around boundary... Umeda, hep-lat/0701005

If the correlation function has a large dynamic range then there are numerical instabilities in MEM.

$$G(t) = \int \rho(\omega) K(t,\omega) d\omega$$

where
$$K(t,\omega) = \frac{\cosh[\omega(t-N_t/2)]}{\sinh[\omega/(2T)]}$$

~ $\exp[-\omega t]$

i.e. it is *almost* a Laplace transform:

$$G(t) \sim \int \rho(\omega) \ e^{-\omega t} \ d\omega$$

Aim is to get G(t) expressed as an exact Laplace transform, then can use convolution rules:

$$G(t) \times e^{+\Omega t} = \int \rho(\omega + \Omega) e^{-\omega t} d\omega$$

$$\uparrow$$
smaller
dynamic
range

Possible Solution

$$G(t) = e^{-Mt} + e^{-M(T-t)}$$

= $e^{-MT/2}(e^{-M(t-T/2)} + e^{M(t-T/2)})$
= $e^{-MT/2}(x^i + x^{-i})$

where $x = e^{-M(t-T/2)}$ and i = t - T/2.

Define

$$\widetilde{G}(t) = e^{-MT/2} (x + x^{-1})^{i}$$

$$= e^{-MT/2} \sum_{j=0}^{i} {}^{i}C_{j} x^{2j-i}$$

$$= e^{-MT/2} \sum_{j=0}^{[i/2]} {}^{i}C_{j} (x^{2j-i} + x^{i-2j})$$

$$= \sum_{j=0}^{[i/2]} {}^{i}C_{j} G(2j-i)$$

We can now write $x + x^{-1} \equiv e^y \longrightarrow$

$$\widetilde{G}(t) = e^{-MT/2}(x + x^{-1})^{i}$$

= $e^{-MT/2}e^{yi}$
= linear combination of $G(t)$

Fleming et al, Phys.Rev.D80 (2009) 074506 [arXiv:0903.2314]

i.e. by defining a linear combination of G(t) correlators, the lattice kernel is transposed into a pure exponential.