Meson Potentials	Techniques 0000	Results 0000000	Conclusions

Static-Light Meson Potentials

Martin Hetzenegger

in collaboration with Gunnar Bali

June 2010

<ロ>< 団> < 団> < 豆> < 豆> < 豆> < 豆> < 豆 の Q (つ) 1/19

Meson Potentials	Techniques 0000	Results 0000000	Conclusions
Outline			

<ロ><□><□><□><□><□><□><□><□><□><□><□><□><0<0 2/19

Fit the masses

For parallel static propagators determine:

$$V_{Q\bar{q}\bar{q}Q}(R) = M_{Q\bar{q}\bar{q}Q}(R) - (M_{Q\bar{q}} + M_{Q\bar{q}}).$$

(1)

Meson	Potentials
000	

Technique

Results 00000000 Conclusions

Operators and quantum numbers I

For static light:

operator	$O_{h}^{'}$ rep.	J^P	$(\bar{Q} \Gamma q)_{meson}$
γ_5	G_1^+	$\frac{1}{2}^{+}$	$0^{-}, 1^{-}$
1	G_1^-	$\frac{1}{2}^{-}$	$0^+, 1^+$
$\gamma_i abla_i$	G_1^-	$\frac{1}{2}^{-}$	$0^{-}, 1^{-}$
$(\gamma_1 \nabla_1 - \gamma_2 \nabla_2) + cycl.$	H^{-}	$\frac{3}{2}^{-}$	$1^+, 2^+$

Results 00000000

Operators and quantum numbers II

For meson-meson potentials:

operator combinations	O_h	SL parallel		SL an	tiparallel
	R = 0	J^P	$\Lambda_{\eta}^{\sigma_{\nu}}$	J^{PC}	$\Lambda_{\eta}^{\sigma_{\nu}}$
$\gamma_5 \otimes \gamma_5$	A_1^+	0+	Σ_g^+	0++	Σ_g^+
1 🛛 1	A_1^+	0+	Σ_g^+	0++	Σ_g^+
$\gamma_5 \otimes \mathbb{1}$	A_1^-	0-	Σ_u^-	0-+	Σ_u^-
$\gamma_5 \otimes \gamma_i abla_i$	A_1^-	0-	Σ_u^-	0-+	Σ_u^-
$\gamma_5 \otimes (\gamma_1 abla_1 - \gamma_2 abla_2)$	T_1^-	1-	Σ_u^+, Π_u	1	Σ_g^+, Π_g
$\gamma_i \nabla_i \otimes (\gamma_1 \nabla_1 - \gamma_2 \nabla_2)$	T_1^+	1+	Σ_g^-, Π_g	1+-	Σ_u^-, Π_u

$$R = 0 \longrightarrow J^{P(C)} \in O(3)(\otimes \mathcal{C})$$

$$R > 0 \longrightarrow \Lambda_{\eta}^{\sigma_{v}} \in D_{\infty h}; \ \eta = P(\cdot C)$$

5/19

(2) (3)

Meson Potentials	Techniques ●ooo	Results 0000000	Conclusions

Stochastic estimates

Masses are extracted from the time dependence of Euclidean two-point correlation functions:

$$C(t) = \langle \mathcal{M}(\vec{y}, t+t_0) \, \mathcal{M}^{\dagger}(\vec{x}, t_0) \rangle, \\ \mathcal{M} = \bar{Q} \, \mathcal{O} \, q.$$
(4)

Stochastic estimator techniques:

$$\frac{1}{N}\sum_{n}|\eta\rangle\langle\eta|=\overline{|\eta\rangle\langle\eta|}=\mathbb{1}+\mathcal{O}(1/\sqrt{N}).$$
(5)

Solve the linear system

$$D|\chi^i\rangle = |\eta^i\rangle,\tag{6}$$

and substitute Eq.(5):

$$D^{-1} = \overline{|\chi\rangle\langle\eta|}.$$
 (7)

Meson Potentials	Techniques o●oo	Results 0000000	Conclusions

Variational method

So our correlator reads:

$$C(t) = \frac{1}{N} \sum_{n} \eta^{(n)^{\dagger}}(t_0 + t) \mathcal{O} D_Q^{-1}(t|t_0) \mathcal{O} \chi^{(n)}(t_0),$$
(8)

$$D_Q^{-1}(t|t_0) = \frac{1+\gamma_4}{2} \prod_{k=t_0}^{t_0+t-1} U_4^{\dagger}(x+k\hat{4}).$$
(9)

To improve our data and to extract also excited states we use several different operators $\mathcal{M}_{i,i} i = 1 \dots N$ and compute all cross correlations

$$C(t)_{ij} = \langle \mathcal{M}(y,t)_i \, \mathcal{M}^{\dagger}(y,0)_j \rangle. \tag{10}$$

Solve the generalized eigenvalue problem and obtain the eigenvalues

$$C(t)\overrightarrow{\nu}^{(k)} = \lambda^{(k)}(t)C(t_0)\overrightarrow{\nu}^{(k)},\tag{11}$$

$$\lambda^{(k)}(t) \propto e^{-(t-t_0)M_k} [1 + O(e^{-(t-t_0)\Delta M_k})],$$
(12)

where M_k is the mass of the *k*-th state.

୦.୦୦ 7/19

Meson Potentials	Techniques oo●o	Results	Conclusions
Noise reduction			

- Stout smearing \rightarrow reduce static self-energy
- Gauss & APE smearing → improve ground state overlap of our operators
- Gauss smearing \rightarrow generate operator basis
- Hopping Parameter Acceleration (HPA)

Meson Potentials	Techniques ○○○●	Results 0000000	Conclusions
HPA			

$$D = \mathbb{1} - \kappa H \tag{13}$$

$$\infty \qquad k-1$$

$$D^{-1} = \sum_{j=0} (\kappa H)^j = \sum_{j=0} (\kappa H)^j + (\kappa H)^k D^{-1}$$
(14)

Meson Potentials	Techniques	Results	Conclusions
		●0000000	

Technical details

lattice size $L^3 \times T$	$16^3 \times 32$
β	5.29
c_{SW}	1.9192
$a \; [fm]$	0.084
$La \ [fm]$	1.34
$m_{\pi} \ [MeV]$	781(3)
κ	0.13550
# conf.	200
# estimates	300
smearing parameters:	
Stout	$N_{iter} = 1, \rho = \frac{1}{6}$
Gauss	$N_{iter} = 16, 50, 100, \kappa = 0.3$
APE	$N_{iter} = 15, \alpha = 2.5$

$$M_{\text{eff}}(t+1/2) = \ln \left(C(t)/C(t+1) \right).$$

っへで 10/19

(15)

Meson Potentials	Techniques 0000	Results o●oooooo	Conclusions

Effective masses: Static light

 $M_{Q\overline{q}}$, $\gamma_{5},$ groundstate and first excited states, $t_{0}=2$

Meson Potentials	Techniques	Results	Conclusions
		0000000	

Effective masses: Meson potentials parallel I

Meson Potentials	Techniques 0000	Results 0000000	Conclusions

Meson potentials parallel: $V_{Q\bar{q}\bar{q}Q}(R)$

Effective masses: Meson potentials parallel II

 $M_{O\overline{q}\ \overline{q}O}$ (R = 3), groundstate, $t_0 = 2$

= •) ((* 14/19

Meson Potentials	Techniques	Results	Conclusions
		00000000	

Meson potentials parallel: Mass splitting

Meson Potentials	Techniques	Results	Conclusions
		00000000	

Effective masses: Meson potentials antiparallel

 $M_{\Omega_{\alpha}^{-}\alpha\overline{\Omega}}(R = 0...5)$: $\gamma_5 \otimes \gamma_5$, groundstate, $t_0 = 2$

Meson Potentials	Techniques	Results ooooooo●	Conclusions
Meson potentia	als: antiparalle		

wilson loop & $M_{Q\overline{q}q\overline{Q}}\left(R\right)$ from 2exp-fits

Meson Potentials	Techniques 0000	Results	Conclusions •o
Summary & O	utlook		

Summary

- Attractive potential between two static light mesons for small distances
- Mass differences between Σ and Π states are smaller than $\approx 50 MeV$
- $M_{O\bar{a}\bar{a}O}(R) \xrightarrow{R \to \infty} 2 M_{O\bar{a}}$

Outlook

- Go to larger lattices
- Fit more operators
- Analyse crossing diagrams:

Thank you

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □