
GPU-Based Conjugate Gradient

Solver for Lattice QCD with

Domain-Wall Fermions

TWQCD Collaboration

Ting-Wai Chiu, Yao-Yuan Mao, Kenji Ogawa

Dept. of Physics, National Taiwan University

Lattice 2010, Villasimius, Italy

Lattice 2010, June 18

Outline

 Introduction

 Our problem to solve

 CG solver for optimal domain-wall fermion operator

 Implementation on CUDA architecture

 Performance

 Summary

2010/6/182 "CG on GPU" by Y.-Y. Mao at Lattice 2010

Introduction

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 20103

 With CUDA/OpenCL, GPU enables large-scale parallel

computation for general purpose with a much lower

price when comparing to a CPU cluster.

 For lattice QCD, much of the computation during HMC

simulation is matrix-vector multiplication, which can be

parallelized well.

 GPU-based codes for Wilson/staggered/overlap fermions

have been developed by other groups.

 We develope GPU-based codes for (optimal) domain-wall

fermions, which provide exact chiral symmetry at finite

lattice spacing.

Optimal Domain-Wall Fermions

 The optimal domain-wall fermion proposed by T.-W. Chiu

can maintain optimal chiral symmetry on lattice.

2010/6/184 "CG on GPU" by Y.-Y. Mao at Lattice 2010

[T.-W. Chiu, PRL (2003); arXiv:hep-lat/0209153]

Different fermions can be obtained by adjusting these two weights

Even-Odd Preconditioning

 We separate even and odd sites.

 Let DOE and DOE contain only 4D hopping terms.

2010/6/185 "CG on GPU" by Y.-Y. Mao at Lattice 2010

Further Preconditioning

 We further make the expression more symmetric.

2010/6/186 "CG on GPU" by Y.-Y. Mao at Lattice 2010

Schur decomposition

Conjugate Gradient Method (CG)

 Conjugate Gradient is an iterative method for solving the

inverse of a positive-definite Hermitian matrix.

Iteration to convergence

2010/6/187 "CG on GPU" by Y.-Y. Mao at Lattice 2010

CG is used for calculating

fermion force and quark

propagator.

It is the most time-consuming

part in the simulation.

Mixed-Precision CG (1)

Low-precision CG

2010/6/188 "CG on GPU" by Y.-Y. Mao at Lattice 2010

Single-precision operations

are much faster then double-

precision ones on GPU

High precision Low precision

Mixed-Precision CG (2)

Defect Correction Reliable Updates

Set every time when

starting low-precision iteration

Keep the previous p when

starting low-precision iteration

Discard previous information

Takes longer to convergence

Keep previous information

Take shorter to convergence

Strict stopping criterion should

be used for low-precision CG

Loose stopping criterion

should be used for low-

precision CG

2010/6/189 "CG on GPU" by Y.-Y. Mao at Lattice 2010

M. A. Clark et al., arXiv:0911.3191v2

R. Strzodka and D. Goddeke, FCCM 2006).

Sleijpen & van derVorst, Computing (1996).

Mixed-Precision CG (3)

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 201010

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

R
e
si

d
u

e

of Iterations

RU

DC

CUDA Architecture

Thread

Block Shared Memory

Device

Global Memory

Constant Memory/

Texture Cache

Host Memory

2010/6/1811 "CG on GPU" by Y.-Y. Mao at Lattice 2010

Memory Architecture

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 201012

 Basic ideas about the memory architecture:

 Shared memory may have bank conflict

 Texture can take care of the locality.

 GPU computing is memory bandwidth bound!

size access bandwidth

Global Large r/w by all threads and host Slow

Constant Small Read only by all threads Fast

Texture Small cache Read only by all threads Fast

Shared Very small r/w by all threads within one block Very fast

Register Very small r/w by only one thread Very fast

Thread/Block Management

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 201013

 Parallelize a loop by designating the value of loop counter

to each thread.

 Number of threads per block

 Should be tested to find the best value

(may be limited by resource in one block)

 Must be a multiple of half-warp.

 Memory bandwidth boundTry to reuse data.

 Larger number of blocks does NOT mean better performance!

 Using loop inside kernel to reduce the number of blocks

sometimes runs faster.

CG Kernels Overview (single-prec.)

The multiplication of M5

and Dw are implemented

in different kernels.

Each line below is implemented in one kernel.

2010/6/1814 "CG on GPU" by Y.-Y. Mao at Lattice 2010

CG Kernels Overview (double-prec.)

The multiplication of M5

and Dw are implemented

in different kernels.

Each line below is implemented in one kernel.

2010/6/1815 "CG on GPU" by Y.-Y. Mao at Lattice 2010

Dw Multiplication Implementation

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 201016

 Hopping terms

 Texture is used for caching data

 Internal loop is used to reuse read-in data

 Link variables multiplication

 For a given μ, U is the same for all s = 1... Ns

 use shared memory

 Gamma matrices multiplication

 Only left-handed Dirac indices are calculated

Dw Multiplication Block Diagram

Gamma matrices multiplication

(only left-handed components)

Link variable multiplication

Restore right-handed components

Load link variable (texture shared memory)

Load vector (texture register)

Iteration for 8 directions

Iteration for t

From thread/block indices, calculate x, y, z, s

Write output to global memory

memory bandwidth bound

GPU main feature

To reuse data;

significant performance

enhancement

All loops here expanded

loop expanded

2010/6/1817 "CG on GPU" by Y.-Y. Mao at Lattice 2010

M5 Multiplication Implementation

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 201018

 Block diagonal in the chiral basis.

 Does not depend on x, y, z, t, or color index.

 So it is a constant matrix-vector multiplication in

the 5th-dim space.

 Use shared memory for storing source vector

M5 Multiplication Block Diagram

M5 matrix multiplication

Load vector (global shared memory)

Load M5 matrix (global register)

Iteration for 24 Dirac/color/complex indices

Iteration for t

From thread/block indices, calculate x, y, z, s

Write output to global memory

GPU main feature

To reuse data

loop expanded

loop expanded

2010/6/1819 "CG on GPU" by Y.-Y. Mao at Lattice 2010

Some More Tuning Methods for Kernels

 To calculate the norm of a vector, we need to sum up all

the components Parallel Reduction

 Try to reuse data as much as possible!

 When doing parallel reduction (calculating norm), do

partly in the pervious kernel:

 Addition/subtraction: try to combine these simple

operation with existing multiplication kernels, for

example:

Parallel reduction of v0

Do a “pre parallel reduction” within each block

2010/6/1820 "CG on GPU" by Y.-Y. Mao at Lattice 2010

To maximize the number of working threads!

Tuning for Memory Access

 Reorder array indices such that adjacent threads will

access adjacent memory spaces.

 Better coalesce!

s = 0 s = 1 s = 2 s = 3

4x3x2 = 24 real numbers

4 real numbers = one float4

Reorder the indices

When Ns = 4, for a given point (x, y, z, t):

neighbor threads access

neighbor memory spaces

2010/6/1821 "CG on GPU" by Y.-Y. Mao at Lattice 2010

Performance

 Our current kernels can obtain 233 Gflops on NVIDIA

GeForce GTX 480.

 The bottleneck is Dw single-precision multiplication.

Dw

(Single)

M5

(Single)

Dw

(Double)

M5

(Double)

CG (Mixed)

GTX 285 177 346 33 69 181

GTX 480 * 248 331 32 116 233

C1060 128 290 29 61 132

C2050 * 160 239 22 100 156

* Our code is not yet well-tuned for Fermi.

All numbers in the table are effective GFlops.

Tested with a163 x 32 lattice.

2010/6/1822 "CG on GPU" by Y.-Y. Mao at Lattice 2010

Different DWF Performance Comparison

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 201023

 Plaquette action on a 163 x 32 lattice,

 One column of quark propagator is calculated

(One CG with reliable updates)

ODWF

Ns = 16

Borici

Ns = 16

DWF

Ns = 16

ODWF

Ns = 32

Borici

Ns = 32

DWF

Ns = 32

GTX 285 180 173 164 -- -- --

GTX 480 * 231 224 216 -- -- --

C2050 * 146 140 133 170 167 163

GTX 285 308 87 47 -- -- --

GTX 480 * 241 67 35 -- -- --

C2050 * 379 107 57 1220 478 281

upper: Gflops / lower: time(s)

Different DWF Performance Comparison

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 201024

 Sign Function Error

ODWF

Ns = 16

Borici

Ns = 16

DWF

Ns = 16

ODWF

Ns = 32

Borici

Ns = 32

DWF

Ns = 32

GTX 285 180 173 164 -- -- --

GTX 480 * 231 224 216 -- -- --

C2050 * 146 140 133 170 167 163

GTX 285 308 87 47 -- -- --

GTX 480 * 241 67 35 -- -- --

C2050 * 379 107 57 1220 478 281

upper: Gflops / lower: time(s)

Sign Func

Error ~ 10-7 ~ 10-4 ~ 10-4 ~ 10-10 ~ 10-6 ~ 10-6

Summary

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 201025

 We have implemented an efficient GPU-based CG solver

for generalized domain-wall fermions.

 On NVIDIA GeForce GTX 480, our CG solver attains

233 Gflops (sustained).

 CUDA kernels are tuned in several ways, including to

separate Dw and M5, to reorder indices, to reuse data,

and to expand short loops etc.

 Optimal domain-wall fermion provides a viable

framework to simulate lattice QCD with optimal chiral

symmetry, especially with our GPU-based CG solver.

Thanks for your attention!

Lattice 2010, June 18, 2010

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 201026

Tuning for Memory Access (2)

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 201027

 Use texture and shared memory

Global

Memory

Texture

Cache

Shared

Memory

Register

Memory

Direct use in program

Global

Memory

Shared

Memory

Register

Memory

Use by Dw(single-prec.) and x p update

Use by M5(single-prec.), and all double prec. kernels

Direct use in program

Kernel Code Generator

 Python is used to generate the source code of some

kernels because

1. Expanding some short loops can enhance the

performance.

2. When doing parallel reduction, number of addition

operations can be controlled.

3. Much easier to maintain the code and to change lattice

size.

2010/6/1828 "CG on GPU" by Y.-Y. Mao at Lattice 2010

Tuning for “Fermi”

 Recently NVIDIA released a new CUDA compute

architecture “Fermi.”

 Some important changes include:

1. One can choose between 16KB/48KB

shared memory/L1 cache or vice versa.

2. Global memory is now cached,

and accesses are processed per warp.

3. Shared memory now has 32 banks and accesses are

processed per warp.

[Tuning CUDA™ Applications for Fermi™, Version 1.0]

16 KB Shared m.

64 KB L1 cache

64 KB Shared m.

16 KB L1 cache

OR

2010/6/1829 "CG on GPU" by Y.-Y. Mao at Lattice 2010

“Fermi” – L1 Cache

 All the 3 points mentioned are related to L1 cache. L1

cache has following properties:

1. Same on-chip memory is used for both L1 and shared

memory . (one is 16KB, another is 48KB)

2. Global memory is cached in L1.

(can be disabled in compiler option)

3. Local memory is also cached in L1.

4. L1 cache has higher bandwidth than texture cache.

[Tuning CUDA™ Applications for Fermi™, Version 1.0]

2010/6/1830 "CG on GPU" by Y.-Y. Mao at Lattice 2010

“Fermi” – L1 Cache

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 201031

 L1 cache benchmark on GTX 480

 Local resource used by Dw kernel is very much.

 Larger L1 cache gives better performance.

 Texture has been used for single-precision Dw.

 Global cache does not affect.

Global cache L1 cache Dw (Single) M5 (Single) Dw (Double) M5 (Double)

L1/L2 48 KB 266 313 36 127

L1/L2 16 KB 183 313 32 95

L2 only 48 KB 266 313 38 132

L2 only 16 KB 183 313 32 98

All numbers in the table are estimated effective Gflops.

Further Possible Tuning Methods

 Half-Precision

 The precision is too low if using CUDA built-in function

__float2half_rn(). A home-made function is needed.

 Link variable

 Gauge fixing

 Reducing I/O (use only 12 or 8 real numbers to store one

SU(3) matrix)

 Dynamical switched mixed-precision CG

 Reliable updates scheme is faster for most of cases, but

sometimes it does not converge correctly.

2010/6/1832 "CG on GPU" by Y.-Y. Mao at Lattice 2010

Different DWF Performance Comparison

2010/6/18"CG on GPU" by Y.-Y. Mao at Lattice 201033

 In Lattice 2005: [R. G. Edwards et al., arXiv:hep-lat/0510086v2]

How GPU

enables us to

use ODWF

