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Introduction
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 With CUDA/OpenCL, GPU enables large-scale parallel 

computation for general purpose with a much lower 

price when comparing to a CPU cluster.

 For lattice QCD, much of the computation during HMC 

simulation is matrix-vector multiplication, which can be 

parallelized well.

 GPU-based codes for Wilson/staggered/overlap fermions 

have been developed by other groups.

 We develope GPU-based codes for (optimal) domain-wall 

fermions, which provide exact chiral symmetry at finite 

lattice spacing.



Optimal Domain-Wall Fermions

 The optimal domain-wall fermion proposed by T.-W. Chiu 

can maintain optimal chiral symmetry on lattice.
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[T.-W. Chiu, PRL (2003); arXiv:hep-lat/0209153]

Different fermions can be obtained by adjusting these two weights



Even-Odd Preconditioning

 We separate even and odd sites. 

 Let DOE and DOE contain only 4D hopping terms.
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Further Preconditioning

 We further make the expression more symmetric.
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Schur decomposition



Conjugate Gradient Method (CG)

 Conjugate Gradient is an iterative method for solving the 

inverse of a positive-definite Hermitian matrix.

Iteration to convergence
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CG is used for calculating 

fermion force and quark 

propagator. 

It is the most time-consuming 

part in the simulation.



Mixed-Precision CG (1)

Low-precision CG
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Single-precision operations 

are much faster then double-

precision ones on GPU 

High precision Low precision



Mixed-Precision CG (2)

Defect Correction Reliable Updates

Set every time when 

starting low-precision iteration

Keep the previous p when 

starting low-precision iteration

Discard previous information

Takes longer to convergence

Keep previous information

Take shorter to convergence

Strict stopping criterion should 

be used for low-precision CG

Loose stopping criterion 

should be used for low-

precision CG
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M. A. Clark et al., arXiv:0911.3191v2

R. Strzodka and D. Goddeke, FCCM 2006).

Sleijpen & van derVorst, Computing (1996).



Mixed-Precision CG (3)
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CUDA Architecture

Thread

Block Shared Memory

Device

Global Memory

Constant Memory/

Texture Cache

Host Memory
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Memory Architecture
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 Basic ideas about the memory architecture:

 Shared memory may have bank conflict

 Texture can take care of the locality.

 GPU computing is memory bandwidth bound!

size access bandwidth

Global Large r/w by all threads and host Slow

Constant Small Read only by all threads Fast

Texture Small cache Read only by all threads Fast

Shared Very small r/w by all threads within one block Very fast

Register Very small r/w by only one thread Very fast



Thread/Block Management
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 Parallelize a loop by designating the value of loop counter 

to each thread.

 Number of threads per block

 Should be tested to find the best value 

(may be limited by resource in one block)

 Must be a multiple of half-warp.

 Memory bandwidth boundTry to reuse data.

 Larger number of blocks does NOT mean better performance!

 Using loop inside kernel to reduce the number of blocks 

sometimes runs faster.



CG Kernels Overview (single-prec.)

The multiplication of M5 

and Dw are implemented 

in different kernels.

Each line below is implemented in one kernel.
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CG Kernels Overview (double-prec.)

The multiplication of M5 

and Dw are implemented 

in different kernels.

Each line below is implemented in one kernel.

2010/6/1815 "CG on GPU" by Y.-Y. Mao at Lattice 2010



Dw Multiplication Implementation
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 Hopping terms 

 Texture is used for caching data

 Internal loop is used to reuse read-in data

 Link variables multiplication 

 For a given μ, U is the same for all s = 1... Ns

 use shared memory

 Gamma matrices multiplication 

 Only left-handed Dirac indices are calculated



Dw Multiplication Block Diagram

Gamma matrices multiplication

(only left-handed components)

Link variable multiplication

Restore right-handed components

Load link variable  (texture  shared memory)

Load vector (texture  register)

Iteration for 8 directions

Iteration for t

From thread/block indices, calculate x, y, z, s

Write output to global memory

memory bandwidth bound

GPU main feature

To reuse data; 

significant performance

enhancement

All loops here expanded

loop expanded
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M5 Multiplication Implementation
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 Block diagonal in the chiral basis.

 Does not depend on x, y, z, t, or color index.

 So it is a constant matrix-vector multiplication in 

the 5th-dim space.

 Use shared memory for storing source vector



M5 Multiplication Block Diagram

M5 matrix multiplication

Load vector  (global  shared memory)

Load M5 matrix (global register)

Iteration for 24 Dirac/color/complex indices

Iteration for t

From thread/block indices, calculate x, y, z, s

Write output to global memory

GPU main feature

To reuse data

loop expanded

loop expanded
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Some More Tuning Methods for Kernels

 To calculate the norm of a vector, we need to sum up all 

the components  Parallel Reduction

 Try to reuse data as much as possible!

 When doing parallel reduction (calculating norm), do 

partly in the pervious kernel:

 Addition/subtraction: try to combine these simple 

operation with existing multiplication kernels, for 

example:

Parallel reduction of v0

Do a “pre parallel reduction” within each block

2010/6/1820 "CG on GPU" by Y.-Y. Mao at Lattice 2010

To maximize the number of working threads!



Tuning for Memory Access

 Reorder array indices such that adjacent threads will 

access adjacent memory spaces.

 Better coalesce!

s = 0 s = 1 s = 2 s = 3

4x3x2 = 24 real numbers

4 real numbers = one float4

Reorder the indices

When Ns = 4, for a given point (x, y, z, t):

neighbor threads access 

neighbor memory spaces
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Performance

 Our current kernels can obtain 233 Gflops on NVIDIA 

GeForce GTX 480.

 The bottleneck is Dw single-precision multiplication.

Dw

(Single)

M5 

(Single)

Dw

(Double)

M5 

(Double)

CG (Mixed)

GTX 285 177 346 33 69 181

GTX 480 * 248 331 32 116 233

C1060 128 290 29 61 132

C2050 * 160 239 22 100 156

* Our code is not yet well-tuned for Fermi.

All numbers in the table are effective GFlops.

Tested with a163 x 32 lattice.
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Different DWF Performance Comparison
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 Plaquette action on a 163 x 32 lattice,

 One column of quark propagator is calculated

(One CG with reliable updates)

ODWF

Ns = 16

Borici

Ns = 16

DWF

Ns = 16

ODWF

Ns = 32

Borici

Ns = 32

DWF

Ns = 32

GTX 285 180 173 164 -- -- --

GTX 480 * 231 224 216 -- -- --

C2050 * 146 140 133 170 167 163

GTX 285 308 87 47 -- -- --

GTX 480 * 241 67 35 -- -- --

C2050 * 379 107 57 1220 478 281

upper: Gflops / lower: time(s)



Different DWF Performance Comparison
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 Sign Function Error

ODWF

Ns = 16

Borici

Ns = 16

DWF

Ns = 16

ODWF

Ns = 32

Borici

Ns = 32

DWF

Ns = 32

GTX 285 180 173 164 -- -- --

GTX 480 * 231 224 216 -- -- --

C2050 * 146 140 133 170 167 163

GTX 285 308 87 47 -- -- --

GTX 480 * 241 67 35 -- -- --

C2050 * 379 107 57 1220 478 281

upper: Gflops / lower: time(s)

Sign Func

Error ~ 10-7 ~ 10-4 ~ 10-4 ~ 10-10 ~ 10-6 ~ 10-6



Summary
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 We have implemented an efficient GPU-based CG solver 

for generalized domain-wall fermions.

 On NVIDIA GeForce GTX 480, our CG solver attains 

233 Gflops (sustained).

 CUDA kernels are tuned in several ways, including to 

separate Dw and M5, to reorder indices, to reuse data, 

and to expand short loops etc.

 Optimal domain-wall fermion provides a viable 

framework to simulate lattice QCD with optimal chiral

symmetry,  especially with our GPU-based CG solver.



Thanks for your attention!

Lattice 2010, June 18, 2010
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Tuning for Memory Access (2)
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 Use texture and shared memory

Global 

Memory

Texture

Cache

Shared

Memory

Register

Memory

Direct use in program

Global 

Memory

Shared

Memory

Register

Memory

Use by Dw(single-prec.) and x p update

Use by M5(single-prec.), and all double prec. kernels

Direct use in program



Kernel Code Generator

 Python is used to generate the source code of some 

kernels because

1. Expanding some short loops can enhance the 

performance.

2. When doing parallel reduction, number of addition 

operations can be controlled.

3. Much easier to maintain the code and to change lattice 

size.
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Tuning for “Fermi”

 Recently NVIDIA released a new CUDA compute 

architecture “Fermi.”

 Some important changes include:

1. One can choose between 16KB/48KB 

shared memory/L1 cache or vice versa.

2. Global memory is now cached, 

and accesses are processed per warp.

3. Shared memory now has 32 banks and accesses are 

processed per warp.

[Tuning CUDA™ Applications for Fermi™, Version 1.0 ]

16 KB Shared m.

64 KB L1 cache

64 KB Shared m.

16 KB L1 cache

OR
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“Fermi” – L1 Cache

 All the 3 points mentioned are related to L1 cache. L1 

cache has following properties:

1. Same on-chip memory is used for both L1 and shared 

memory . (one is 16KB, another is 48KB)

2. Global memory is cached in L1. 

(can be disabled in compiler option)

3. Local memory is also cached in L1.

4. L1 cache has higher bandwidth than texture cache.

[Tuning CUDA™ Applications for Fermi™, Version 1.0 ]
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“Fermi” – L1 Cache
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 L1 cache benchmark on GTX 480

 Local resource used by Dw kernel is very much.

 Larger L1 cache gives better performance.

 Texture has been used for single-precision Dw.

 Global cache does not affect.

Global cache L1 cache Dw (Single) M5 (Single) Dw (Double) M5 (Double)

L1/L2 48 KB 266 313 36 127

L1/L2 16 KB 183 313 32 95

L2 only 48 KB 266 313 38 132

L2 only 16 KB 183 313 32 98

All numbers in the table are estimated effective Gflops.



Further Possible Tuning Methods

 Half-Precision

 The precision is too low if using CUDA built-in function 

__float2half_rn().  A home-made function is needed.

 Link variable

 Gauge fixing

 Reducing I/O (use only 12 or 8 real numbers to store one 

SU(3) matrix)

 Dynamical switched mixed-precision CG

 Reliable updates scheme is faster for most of cases, but 

sometimes it does not converge correctly.
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Different DWF Performance Comparison
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 In Lattice 2005: [R. G. Edwards et al., arXiv:hep-lat/0510086v2]

How GPU 

enables us to 

use ODWF


