
Multi GPU Performance of
Conjugate Gradient Algorithm

Hyung-Jin Kim, Weonjong Lee
Department of physics and Astronomy

Seoul National University

Lattice 2010, Italy

http://lgt.snu.ac.kr/?main=wlee

Seoul National University

Department Of Physics

ㅠ

Outline

• CG(Conjugate Gradient) Method & Dirac Operator

• CG Implementation on GPU using CUDA & CUBLAS

• Multi GPU implementation using MPI

• Conclusion

Seoul National University

Department Of Physics

ㅠ

Conjugate Gradient algorithm

- Iterative method for solving linear algebraic equations of the following

form

 Ax = b
- A : n x n positive definite(∀x ≠ 0, x†Ax > 0) Hermitian matrix

- x, b : n dimensional complex vectors

- A and b are known, x is unknown.

Seoul National University

Department Of Physics

ㅠ

CUBLAS & CG

for (i = 0; i < Ndim and δnew > ε2δ0; i++){

 α = δnew / d†Ad

 x = x + αd

 r = r - αAd

 δold = δnew

 δnew = r†r

 β = δnew / δold

 d = r + βd }

Update
process

r : residual vector
d : directional vector
ε : tolerance
Ax(or Ad): Dirac operation Initial Condition

r = b - Ax

d = r

δnew = r†r

δ0 = δnew

• Conjugate gradient operation

• All of vector operations are processed using CUBLAS library
except “Dirac operation"

Examples

∙ δnew = r†r
Float DotProduct(…)
{ return cublasDdot(…); }

∙ x = x + αd
void VectorAddVector(…)
{ cublasDaxpy(…); }
…

Seoul National University

Department Of Physics

ㅠ

Dirac operation
• Dirac equation h = Aχ A ≡ −𝐷2 + 𝑚2

• 𝐷𝑥,𝑦 = 𝑈μ 𝑥 δ𝑦,𝑥+μ − 𝑈μ 𝑥 − μ δ𝑦,𝑥−μ

• Part of Dirac operation(staggered fermion)

D χ(x) = Σ Uμ(x)χ(x+μ) - Uμ(x-μ)χ(x-μ)

†

𝑥ʺ1
𝑥ʺ2
𝑥ʺ3

𝑥ʹ1
𝑥ʹ2
𝑥ʹ3

 = –

• Each vector & matrix are complex value
6 output, 8 x 6 input vector, 18 x 8 matrix data → 1584 bytes

• Uμ(x)Χ(x+μ) part has 72 floating point calculations

→ 8 x 72 = 576 floating point calculations per site

• For 28^3 x 96 lattice, there are 106 of lattice even(or odd) sites
→ 0.61 Giga floating point calculations
→ 1.55 Giga bytes of data transfer : Memory IO is major bottle neck !

μ

𝑎ʹ1 𝑎ʹ2 𝑎ʹ3
𝑏ʹ1 𝑏ʹ2 𝑏ʹ3
𝑐ʹ1 𝑐ʹ2 𝑐ʹ3

𝑥1
𝑥2
𝑥3

𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3

†

Seoul National University

Department Of Physics

Machine Environment

∙ specification

David Cluster

∙ MPI Lib : MVAPICH v1.1(MPICH for infiniband)

∙ HW : Qlogic 4x DDR 20Gbps infiniband SW, HCA

∙ Tested bandwidth

 Over packet size 64Kbytes,

 it shows 95% of its maximum bandwidth.

 Tested maximum Bandwidth is about 1.4 GB/sec.

20Gbps Infiniband SW

Seoul National University

Department Of Physics

Machine Environment

∙ specification

David Cluster

∙ 4 core x 16 = 64 node GPU cluster

∙ intel i7 920 2.66Ghz

∙ 1.3Ghz 12GB triple channel

∙ 2 x nVIDIA GTX 295 = 4 GPUs per node

Seoul National University

Department Of Physics

Machine Environment

∙ specification

David Cluster

GTX 295
∙ 2 x GT200 GPU

∙ 2 x 895 GFLOPS (Single precision)

∙ 2 x 74.4 GFLOPS (Double precision)

∙ 2 x 111.5 GB/sec memory bandwidth

∙ Sustained bandwidth(Max. value)

Host to Device(paged) : 2850MB/sec

Device to Host(paged) : 2950MB/sec

Device To Device : 94GB/sec

PCI-E Band.

Seoul National University

Department Of Physics

ㅠ

1st CUDA CG code

...
for(x = 0;x < Nx ;x++)
for(y = 0;y < Ny ;y++)
for(z = 0;z < Nz ;z++)
for(t = 0;t < Nt ;t++)
{
 for(μ = 0; μ < 4 ; μ++)
 {
 ...
 if(cur_l[mu] == nx[mu]-1)
 ...
 else
 ...
 uDotXPlus(sol, U, src);
 ...
 uDagDotXMinus(sol, U, src);
 ...
 }

}

CPU code(CPS Lib.) CUDA code

...
position = blockIdx.x*blockDim.x+
 threadIdx.x;
Get_location(cur_l, position);
...
for(μ= 0; μ < 4; μ++)
{
 ...
 if(cur_l[mu] == nx[mu]-1)
 ...
 else
 ...
 uDotXPlus(sol, U, src);
 ...
 uDagDotXMinus(sol, U, src);
 ...
}

∙ Initial performance is 0.97
GFLOPS per 1 GPU(DP).
∙ GPU is only twice faster than
CPU code(0.46GFLOPS,DP).

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Seoul National University

Department Of Physics

ㅠ

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CG optimization 1:
coalesced memory access

Usual program(serial) memory access pattern

parallel program memory access pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Coalesced memory access pattern

Coalesced memory access →
maximum bandwidth is possible

between GPU and device memory

Performance is enhanced by 8.5 times, it shows 8.2 GFLOPS

Seoul National University

Department Of Physics

ㅠ

CG optimization 2:
Register & Shared Memory

• Register & shared Mem. are very fast on-chip

memory .

• compute capability 1.3(CUDA compute mode),

16K of shared Mem. & 64K of registers are

usable. But in double precision, shared

memory has intrinsic bank-conflict problem.

• Register also has memory bank-conflict,

but if the number of thread block is multiples

 of 64, bank-conflict could be avoidable

• By using these fast buffer, we can accelerate

about 3 times more. GPU FLOPS is 25 GFLOPS

• Register used code is ~15% faster than shared

memory used program.

Seoul National University

Department Of Physics

ㅠ

CG optimization 3:
Occupancy

• Occupancy is very complicated issue, there is no

“always correct answer”.

• In our case, we reduced the number of used registers

under 64, so 2 thread blocks can be launched per

multiprocessors(Occupancy = 25%). This enables us

7% of performance benefit.

※ total 16348 registers → there are 128 threads per

block, so 128 registers(=16384/128) are assigned for

each multiprocessors.

𝑥1
𝑥2
𝑥3

𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3

𝑥ʹ1
𝑥ʹ2
𝑥ʹ3

 =

Two ways of
Matrix-vector
Multiplication

- More Register -

𝑥ʹ1 += a1*x1 + a2*x2 + a3*x3
Total 77 registers are needed

- Less Register -

𝑥ʹ1 += a1*x1
𝑥ʹ1 += a2*x2
𝑥ʹ1 += a3*x3

Total 61 registers are needed

Occupancy =
𝑎𝑐𝑡𝑖𝑣𝑒 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

𝑀𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑𝑠
 ∗ 100

Seoul National University

Department Of Physics

ㅠ

CG optimization 4 : Etc.

• Reduce the "branch code"(if, case, switch ...)

– GPU is not good in "branch prediction", so unnecessary branch code should be
removed.

– By this work, we can get additional 30% of performance enhancement

• SU(3) matrix reconstruction(12 parameter)

– Matrix 3rd row : c = (a x b)*

this reduces data transfer by 1/3.

– The amount of calculation is

increased by 67%

– More registers are used(occupancy↓)

– In actual calculation,

overall performance is decreased about 7%

• bit operator, loop unrolling, etc …

– Performance is improved by 5~8 %

SU3 reconstruct
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
 𝑎 ⨯ 𝑏

∗

Data loading(2.75ms,ideal)

GPU calculation(3.35ms, ideal)

SU3 reconstruction result
Total 5.1ms (measured)

Data loading(4.1ms, ideal)

(2ms, ideal)

Most Optimized result
Total 4.7ms (measured)

GPU calculation

Seoul National University

Department Of Physics

ㅠ

CG performance

Initial CG performance : 0.97 GFLOPS

optimized performance : 35 GFLOPS

This is 47% of peak performance
in GTX 295 GPU (double precision)

Performance is enhanced by 76 times

than CPU code!

Seoul National University

Department Of Physics

ㅠ

• Data communication flow

MPI for Multi GPU

Lattice data
at each node

… …

Each node collects
boundary data
on GPU Mem.

Download GPU data on host memory

cudaMemcpy(DeviceToHost)

MPI data transfer
Data send and receive
are done concurrently

by 4 direction

CPU Mem

Upload
transfered Data
from host to
device

GPU

Seoul National University

Department Of Physics

ㅠ

MPI Communication

4 node
time
(ms)

8 node
time
(ms)

GPU calculation time 4.7 2.45

boundary data collect 0.9 0.5

cudaMemcpy DtoH 2.9 2.1

MPI communication 2.3 1.8

cudaMemcpy HtoD 3.4 1.7

Total Comm. time ~9.5 ~6.1

Total time ~14.5 ~8.6

Memcpy DtoH MPI Comm. Memcpy HtoD

Memcpy DtoH

MPI Comm.

Memcpy HtoD

• Network optimization idea

If we can overlap “cudamemcpy time” with

“MPI communication time”,

then total communication time could be reduced !

• MPI Communication function(used CPS library)

GetPlusData(double *send, double *rcv,…)

GetMinusData(double *send, double *rcv,…)

They communicate in “Asynchronous way”

→ Do MPI “Send” & “Receive” simultaneously

Synchronous
Comm.

Asynchronous
Comm.

Seoul National University

Department Of Physics

ㅠ

Problems & Future work
• Bi-directional cudamemcpy is not supported in our GPU.

– GPU download & upload sequence could not be

overlapped

• Non compatible page locked memory

– Asynchronous MPI communication

– Asynchronous cudamemcpy

In both case, they need their own “page-locked memory”

• These Problems should be resolved to improve the

network Comm. on the cluster system !

– From Fermi version of Tesla, it supports bi-directional
memcpy between CPU and GPU

– By using “Mellanox-nVIDIA GPU-Direct Technology”,
Infiniband and GPU can share the page locked memory

• Implement mixed precision

CPU Mem

Page locked
by GPU

Page locked
by infiniband

Not compatible!
“memcpy” is needed

Page locked Mem. sharing
on GPU & infiniband

CPU Mem

GPU-Direct(Mellanox-nVIDIA)

Seoul National University

Department Of Physics

ㅠ

Summary

• We can get a good result from optimized CUDA CG
program in staggered fermion.

– It is 35 GFLOPS (47% of peak), and this is 75.6 times
faster result than CPU code

– Including network communication time,
FLOPS is reduced to 12.3 GFLOPS

• Current bottle-neck in GPU programming is in the
network communication & GPU memory bandwidth

Seoul National University

Department Of Physics

ㅠ

Thank you

Any Question?

