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Motivation

Problem statement

Calculate K → ππ to investigate origins of the ∆I = 1/2-rule

Do this:

keeping the charm active, [Giusti et. al., 2004]

outside the GIM-limit,

on large volumes (L ≤ 2 fm)

A lot computational power and good algorithms are required.



Transition amplitudes of K → ππ

Parametrization of the transition amplitudes

T (K → ππ|I=α) = iAαeiδα , α = 0, 2

Experimental data:

|A0|/|A2| ∼ 22.1 ∆I = 1/2-rule

Mechanism of the enhancement not yet understood quantitatively!



Chiral symmetry

Chiral symmetry is an important aspect

because of mixing patterns in the operator basis

and to make contact to ChPT and determine LECs

Ginsparg-Wilson relation

γ5D + Dγ5 = āDγ5D

Solutions: Neuberger overlap, domain wall, . . .



Neuberger overlap fermions

Definition in terms of the Wilson-Dirac operator Dw

D =
1 + γ5 sign(Q)

ā
, Q = γ5(aDw − 1− s)

Sign function of an operator is defined by series expansion

sign(Q) ' XPn(X 2), X ≡ Q/‖Q‖

Depending on n this is an expensive operation!



Minmax approximation to sign(Q) [Giusti, Hoelbling, Lüscher, Wittig]

sign(Q) ' XPn(X 2), Pn(y) =
n∑
k

ckTk(y)

Tk(y) to be Chebyshev polynomials for numerical reasons

Find ck via minmax approximation and minimization of δ

δ = max
ε≤y≤1

|h(y)|, h(y) ≡ 1−√y Pn(y)



Low-mode projection [Giusti, Hoelbling, Lüscher, Wittig]

In the the ε-regime low-lying eigenmodes cannot be ignored

0 ν0 ν1 . . . νl νl+1 . . . νN−1

Figure: Positive spectrum of Q†Q

Dirac-Operator Q gets ill-conditioned

Separate the few lowest modes and treat them exactly

Do this in such a way that error remains controllable



Low-mode projection [Giusti, Hoelbling, Lüscher, Wittig]

Determine low-lying eigenmodes via Ritz functional

Let V be the subspace spanned by those low-modes

Introduce projectors

P± =
∑
νk≶0

uk ⊗ (uk)†, uk ∈ V

With that

sign(Q) ' P+ − P− + (1− P+ − P−) XPn(X 2)



Low-mode projection algorithm

1 Find lowest eigenvalue ν0 of Q via Ritz with CG

2 Project to the orthogonal subspace spanned by ν0

P0z = z − u0〈u0|z〉

3 Introduce the projected operator Q0 = P0QP0

4 Repeat with Q → Q0, kth projector is given

Pkz = z −
k∑
j

uj〈uj |z〉



Utilization of the GPU

Procedure is very intensive in terms of computing time

Lots of applications of Q are neccessary

Many vector operations and scalar products involved
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Utilization of the GPU

Procedure is very intensive in terms of computing time

Lots of applications of Q are neccessary

has been done successfully on GPU [Barros, Babich, Brower, Clark, Rebbi]

Many vector operations and scalar products involved

GPU is generally very good at those



Optimisations

For the Wilson-Dirac operator

Ensure coalescing by dedicated data layout

Minimize memory usage with SU(3) reconstruction
[Bunk, Sommer, 1985]

Use an index theme which supports texture cache

For the Neuberger operator

Make sure the whole algorithm stays on the GPU

Optimally overlap calculation with communication



Hardware comparison

GTX285 GTX480 C20*0
Number of Cores 240 480 448

Amount of memory 2 1.5 3–6
Shader clock rate 1476 1401 1150

Memory clock rate 1242 1848 1500
Memory bandwidth 159.0 177.4 144.0



Benchmark results for BLAS functions
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Figure: GeForce GTX285, Lattice size is 164, single-precision



Benchmark results for Wilson-Dirac operator
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Figure: Lattice spatial volume is fixed at 243, single-precision



Diagrams for K → ππ

Q±1 = ([O1]suud ± [O1]sudu)− (u → c)

Q±2 = (m2
u −m2

c)md(s̄P+d) + ms(s̄Pd)

Pa(x) = i(ψ̄γ5T
aψ)(x)



Correlation functions

K → π

C±1,2;ν(x0, y0) =
∑
xy

〈[P(x)]duQ1,2(0)[P(y)]us〉ν

K → vacuum

K±1,2;ν(x0) =
∑

x

〈Q1,2(0)[P(y)]ds〉ν



Inversion of the Neuberger operator

Pseudo-scalar density allows for zero-mode saturation

Spectral decomposition

S(x , y) =

|ν|∑
i

vi (x)⊗ vi (y)†

mV
+ higher modes

With that

introduce a zero-mode source for inversion,

correlators can be obtained by scalar products of zero-modes



Inversion of the Neuberger operator

Often the projected propagator P∓S(x , y)P± occurs

Zero-modes have definite chirality

γ5vi (x) = χvi (x), χ = ν/|ν|

Hence, they do not contribute to projected propagator

Still one explicit inversion for the propagator neccessary



Conclusion

Neuberger overlap fermions are very compute intensive

In the ε-regime low-modes cannot be ignored

Zero-mode expansion as alternative approach for the
propagator (work in progess)

GPUs are a good utility for our investigations



Thank you for your attention!


