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Motivation

Problem statement

Calculate K — 77 to investigate origins of the Al = 1/2-rule

Do this:
m keeping the charm active, [Giusti et. al., 2004]
m outside the GIM-limit,

m on large volumes (L < 2fm)

A lot computational power and good algorithms are required.



Transition amplitudes of K — 7

m Parametrization of the transition amplitudes
T(K = 7t|j=a) = iAge?,  a=0,2
m Experimental data:
|Ao|/|Az| ~ 22.1 Al =1/2-rule

Mechanism of the enhancement not yet understood quantitatively!



Chiral symmetry

Chiral symmetry is an important aspect
m because of mixing patterns in the operator basis
m and to make contact to ChPT and determine LECs

Ginsparg-Wilson relation

’75D aF D")/5 = 5D’)/5D

Solutions: Neuberger overlap, domain wall, ...



Neuberger overlap fermions

m Definition in terms of the Wilson-Dirac operator D,,

_ 1+ sign(Q)
a

D , Q =7(aDy —1—75)

m Sign function of an operator is defined by series expansion
sign(Q) =~ XPy(X?), X =Q/||Qll

m Depending on n this is an expensive operation!



Minmax approximation to sign(Q)  [Giusti, Hoelbling, Liischer, Wittig]

sign(Q) ~ XP,(X?), Pa(y) = Z ck Tk(y)

m Ti(y) to be Chebyshev polynomials for numerical reasons

m Find ¢4 via minmax approximation and minimization of §

§= max|h( ), h(y) =1—/y Pa(y)

e<y<



[Giusti, Hoelbling, Liischer, Wittig]

Low-mode projection

In the the e-regime low-lying eigenmodes cannot be ignored
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Figure: Positive spectrum of QTQ

m Dirac-Operator @ gets ill-conditioned
m Separate the few lowest modes and treat them exactly

m Do this in such a way that error remains controllable



Low-mode projection [Giusti, Hoelbling, Liischer, Wittig]

m Determine low-lying eigenmodes via Ritz functional
m Let V be the subspace spanned by those low-modes

m Introduce projectors

Py = Z U & (Uk)T, u, eV

VS0
m With that

sign(Q) ~ Py —P_ + (1 —P, —P_) XP,(X?)



Low-mode projection algorithm

Find lowest eigenvalue 1y of @ via Ritz with CG
Project to the orthogonal subspace spanned by 1y

Poz = z — up(upl|z)

Introduce the projected operator Qp = Py QP
Repeat with @ — Qp, kth projector is given

k

Pyz=z-— Z uj(uj|z)

J



Utilization of the GPU

m Procedure is very intensive in terms of computing time

m Lots of applications of Q are neccessary

m Many vector operations and scalar products involved
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Utilization of the GPU

m Procedure is very intensive in terms of computing time

m Lots of applications of Q are neccessary

has been done successfully on GPU [Barros, Babich, Brower, Clark, Rebbi]

m Many vector operations and scalar products involved

GPU is generally very good at those



Optimisations

For the Wilson-Dirac operator
m Ensure coalescing by dedicated data layout

m Minimize memory usage with SU(3) reconstruction
[Bunk, Sommer, 1985]

m Use an index theme which supports texture cache

For the Neuberger operator
m Make sure the whole algorithm stays on the GPU

m Optimally overlap calculation with communication



Hardware comparison

GTX285 GTX480 C20*0

Number of Cores 240 480 448
Amount of memory 2 1.5 3-6
Shader clock rate 1476 1401 1150
Memory clock rate 1242 1848 1500

Memory bandwidth 159.0 177.4 144.0



Benchmark results for BLAS functions
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Figure: GeForce GTX285, Lattice size is 164, single-precision



Benchmark results for Wilson-Dirac operator
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Figure: Lattice spatial volume is fixed at 243, single-precision
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" QF = (m2 — m2)my(3P, d) + my(5Py)
* PA(x) = i(¥s T¥)(x)



Correlation functions

Ciz(%0,%0) = Y ([P()]au Q1.2(0)[P(y)]us)o

Xy

K — vacuum

K (x0) =Y (Qu2(0)[P(y)]as)s

X



Inversion of the Neuberger operator

m Pseudo-scalar density allows for zero-mode saturation
m Spectral decomposition

v

. ()T
S(x,y) = Z v,(x)ji)/,(y) + higher modes

With that

m introduce a zero-mode source for inversion,

m correlators can be obtained by scalar products of zero-modes



Inversion of the Neuberger operator

Often the projected propagator P+S(x,y)P+ occurs

Zero-modes have definite chirality

vi(x) = xvi(x),  x=v/v|

Hence, they do not contribute to projected propagator

Still one explicit inversion for the propagator neccessary



Conclusion

Neuberger overlap fermions are very compute intensive

In the e-regime low-modes cannot be ignored

Zero-mode expansion as alternative approach for the
propagator (work in progess)

m GPUs are a good utility for our investigations



Thank you for your attention!



