Analysis of LQCD results on the baryon masses in chiral perturbation theory

J. Martin-Camalich¹@ Lattice 2010

in collaboration with

L. S. Geng^{2,3} and M. J. Vicente Vacas¹

1 IFIC, Valencia-SP 2 Beihang University, Beijing-CH 3 TUM, München-GE

arXiv:1003.1929 [hep-lat]

June 15, 2010

LQCD & χ PT

- **ChPT**: Effective field theory of QCD in the low-energy limit (Weinberg, Gasser and Leutwyler, ...)
 - Exploits the global symmetries of the QCD Lagrangian and ground state
 - QFT perturbative expansion respect with $\Lambda_{ChSB} \simeq 1$ GeV (m_q and $p \simeq 0$)
 - Two types of terms
 - * Analytical Not constrained by symmetries (LECs)
 - * Non-analytical Consequences of chiral symmetry breaking
- The LQCD and $\chi {\rm PT}$ friendship provides a model-independent framework to non-perturbative ${\rm QCD}$
 - xPT helps to reduce systematical LQCD uncertainties
 - Extrapolation to the physical point
 - Finite volume corrections
 - Lattice artifacts
 - \blacktriangleright LQCD is a source of information to fix the LECs of $\chi {\rm PT}$

χPT can correlate seemingly uncorrelated observables
 Far-reaching phenomenological applications!

LQCD & χ PT

- **ChPT**: Effective field theory of QCD in the low-energy limit (Weinberg, Gasser and Leutwyler, ...)
 - Exploits the global symmetries of the QCD Lagrangian and ground state
 - QFT perturbative expansion respect with $\Lambda_{ChSB} \simeq 1$ GeV (m_q and $p \simeq 0$)
 - Two types of terms
 - * Analytical Not constrained by symmetries (LECs)
 - * Non-analytical Consequences of chiral symmetry breaking
- The LQCD and $\chi {\rm PT}$ friendship provides a model-independent framework to non-perturbative ${\rm QCD}$
 - χ PT helps to reduce systematical LQCD uncertainties
 - ★ Extrapolation to the physical point
 - * Finite volume corrections
 - ★ Lattice artifacts
 - LQCD is a source of information to fix the LECs of χ PT

• χ PT can correlate seemingly uncorrelated observables

LQCD & χ PT

- **ChPT**: Effective field theory of QCD in the low-energy limit (Weinberg, Gasser and Leutwyler, ...)
 - Exploits the global symmetries of the QCD Lagrangian and ground state
 - QFT perturbative expansion respect with $\Lambda_{ChSB} \simeq 1$ GeV (m_q and $p \simeq 0$)
 - Two types of terms
 - * Analytical Not constrained by symmetries (LECs)
 - * Non-analytical Consequences of chiral symmetry breaking
- The LQCD and $\chi {\rm PT}$ friendship provides a model-independent framework to non-perturbative ${\rm QCD}$
 - χPT helps to reduce systematical LQCD uncertainties
 - * Extrapolation to the physical point
 - * Finite volume corrections
 - ★ Lattice artifacts
 - \blacktriangleright LQCD is a source of information to fix the LECs of $\chi {\rm PT}$
- χPT can correlate seemingly uncorrelated observables Far-reaching phenomenological applications!

$N_f = 2 + 1$ LQCD simulations on the baryon spectrum

- BMW Collab., Science (2008)
- $N_f = 2 + 1$ dynamical simulations
- Multiple lattice spacings
- Multiple Volumes
- Various strange quark masses
- Chiral regime m_{PS} ≥ 190 MeV
 Phenomenological extrapolation

• Similar simulations have been reported by other collaborations: LHPC (2008), PACS-CS (2008,2009), HSC (2008), ...

- These results preclude the progress to come in the baryon sector!
 - Spectroscopy Hölbling PL (Mon.)
 - Baryon structure Alexandrou PL (Mon.), Hadronic structure Parallel

$N_f = 2 + 1$ LQCD simulations on the baryon spectrum

- BMW Collab., Science (2008)
- $N_f = 2 + 1$ dynamical simulations
- Multiple lattice spacings
- Multiple Volumes
- Various strange quark masses
- Chiral regime m_{PS} ≥ 190 MeV
 Phenomenological extrapolation
- Similar simulations have been reported by other collaborations: LHPC (2008), PACS-CS (2008,2009), HSC (2008), ...
- These results preclude the progress to come in the baryon sector!
 - Spectroscopy Hölbling PL (Mon.
 - Baryon structure Alexandrou PL (Mon.), Hadronic structure Parallel

$N_f = 2 + 1$ LQCD simulations on the baryon spectrum

- BMW Collab., Science (2008)
- $N_f = 2 + 1$ dynamical simulations
- Multiple lattice spacings
- Multiple Volumes
- Various strange quark masses
- Chiral regime m_{PS} ≥ 190 MeV
 Phenomenological extrapolation
- Similar simulations have been reported by other collaborations: LHPC (2008), PACS-CS (2008,2009), HSC (2008), ...
- These results preclude the progress to come in the baryon sector!
 - Spectroscopy Hölbling PL (Mon.)
 - Baryon structure Alexandrou PL (Mon.), Hadronic structure Parallel

▶ ...

- $SU(3)_F$ heavy-baryon χPT shows a very poor convergence
 - Experimental data, e.g baryon magnetic moments Meissner et al. NPB (1997)
 - Quark mass dependence of LQCD results, e.g. baryon masses LHPC, PRD(2008), PACS-CS, PRD(2009)
- Ansatz leading to improved convergence in $B\chi PT$
- $SU(2)_F$ hyperon heavy-baryon χ PT Jiang, Tiburzi, Walker-Loud
 - Improved convergence $\epsilon \simeq 0.1 0.3$
 - Proliferation of LECs
- $SU(3)_F$ -B χ PT in finite-range regularization Leinweber, Thomas, Young
 - Very successful chiral extrapolations
 - Introduces a cut-off phenomenologically accounting for higher-order corrs.

Lorentz covariant $SU(3)_F$ -B χ PT Geng, JM, Vicente Vacas

- \bullet Improved convergence $\epsilon \simeq 0.1 0.5$
 - Exploits $SU(3)_F$ symmetry: Powerful phenomenology

- $SU(3)_F$ heavy-baryon χPT shows a very poor convergence
 - Experimental data, e.g baryon magnetic moments Meissner et al. NPB (1997)
 - Quark mass dependence of LQCD results, e.g. baryon masses LHPC, PRD(2008), PACS-CS, PRD(2009)
- Ansatz leading to improved convergence in $B\chi PT$
- $SU(2)_F$ hyperon heavy-baryon χ PT Jiang, Tiburzi, Walker-Loud
 - Improved convergence $\epsilon \simeq 0.1 0.3$
 - Proliferation of LECs
- $SU(3)_F$ -B χ PT in finite-range regularization Leinweber, Thomas, Young
 - Very successful chiral extrapolations
 - Introduces a cut-off phenomenologically accounting for higher-order corrs.

Lorentz covariant $SU(3)_F$ -B χ PT Geng, JM, Vicente Vacas

- Improved convergence $\epsilon \simeq 0.1 0.5$
 - Exploits $SU(3)_F$ symmetry: Powerful phenomenology

- $SU(3)_F$ heavy-baryon χPT shows a very poor convergence
 - Experimental data, e.g baryon magnetic moments Meissner et al. NPB (1997)
 - Quark mass dependence of LQCD results, e.g. baryon masses LHPC, PRD(2008), PACS-CS, PRD(2009)
- Ansatz leading to improved convergence in $B\chi PT$
- $SU(2)_F$ hyperon heavy-baryon χ PT Jiang, Tiburzi, Walker-Loud
 - Improved convergence $\epsilon \simeq 0.1 0.3$
 - Proliferation of LECs
- $SU(3)_F$ -B χ PT in finite-range regularization Leinweber, Thomas, Young
 - Very successful chiral extrapolations
 - Introduces a cut-off phenomenologically accounting for higher-order corrs.

Lorentz covariant $SU(3)_F$ -B χ PT Geng, JM, Vicente Vacas

- Improved convergence $\epsilon \simeq 0.1-0.5$
 - Exploits $SU(3)_F$ symmetry: Powerful phenomenology

- $SU(3)_F$ heavy-baryon χPT shows a very poor convergence
 - Experimental data, e.g baryon magnetic moments Meissner et al. NPB (1997)
 - Quark mass dependence of LQCD results, e.g. baryon masses LHPC, PRD(2008), PACS-CS, PRD(2009)
- Ansatz leading to improved convergence in $B\chi PT$
- $SU(2)_F$ hyperon heavy-baryon χ PT Jiang, Tiburzi, Walker-Loud
 - Improved convergence $\epsilon \simeq 0.1 0.3$
 - Proliferation of LECs
- $SU(3)_F$ -B χ PT in finite-range regularization Leinweber, Thomas, Young
 - Very successful chiral extrapolations
 - Introduces a cut-off phenomenologically accounting for higher-order corrs.

Lorentz covariant $SU(3)_F$ -B χ PT Geng, JM, Vicente Vacas

- For the second second
 - Exploits $SU(3)_F$ symmetry: Powerful phenomenology

۲

- Employs a Lorentz covariant baryon chiral Lagrangian
 - Consistent power-counting in *d*-reg: EOMS scheme Fuchs et al., PRD'03 \overline{MS} is extended to absorb the breaking pieces into a finite set of LECs
- (a) ε ≥ δ = M_D M_B → Decuplet included as relativistic Rarita-Schwinger fields
 Spurious DOF of the spin-3/2 field are filtered Pascalutsa, PLB'01
 EOMS scheme adapted to decuplet contributions JM et al., PLB'09
 (a) Heavy-baryon results recovered in the non-relativistic 1/M_B expansion
 - Covariant approach resums a tower of relativistic corrections required by Lorentz invariance and analyticity
 - No new parameters or LECs are included!
 - Understanding of SU(3)_F of the baryon octet magnetic moments JM et al., PRL'08, PLB'09
 - Prediction of the decuplet electromagnetic structure JM et al., PRD'09
 - Prediction of $f_1(0)$ in semileptonic hyperon decaysJM et al., PRD'09

- Employs a Lorentz covariant baryon chiral Lagrangian
 - Consistent power-counting in *d*-reg: EOMS scheme Fuchs et al., PRD'03 \overline{MS} is extended to absorb the breaking pieces into a finite set of LECs
- **2** $\epsilon \gtrsim \delta = M_D M_B \rightarrow \text{Decuplet included}$ as relativistic Rarita-Schwinger fields
 - Spurious DOF of the spin-3/2 field are filtered Pascalutsa, PLB'01
 - EOMS scheme adapted to decuplet contributions JM et al., PLB'09
- Heavy-baryon results recovered in the non-relativistic 1/M_B expansion
 Covariant approach resums a tower of relativistic corrections required by Lorentz invariance and analyticity
 - No new parameters or LECs are included!
 - Understanding of SU(3)_F of the baryon octet magnetic moments JM et al., PRL'08, PLB'09
 - Prediction of the decuplet electromagnetic structure JM et al., PRD'09
 - Prediction of $f_1(0)$ in semileptonic hyperon decaysJM et al., PRD'09

- Employs a Lorentz covariant baryon chiral Lagrangian
 - Consistent power-counting in *d*-reg: EOMS scheme Fuchs et al., PRD'03 \overline{MS} is extended to absorb the breaking pieces into a finite set of LECs
- **2** $\epsilon \gtrsim \delta = M_D M_B \rightarrow \text{Decuplet included}$ as relativistic Rarita-Schwinger fields
 - Spurious DOF of the spin-3/2 field are filtered Pascalutsa, PLB'01
 - EOMS scheme adapted to decuplet contributions JM et al., PLB'09
- **③** Heavy-baryon results recovered in the non-relativistic $1/M_B$ expansion
 - Covariant approach resums a tower of relativistic corrections required by Lorentz invariance and analyticity
 - No new parameters or LECs are included!
 - Understanding of SU(3)_F of the baryon octet magnetic moments JM et al., PRL'08, PLB'09
 - Prediction of the decuplet electromagnetic structure JM et al., PRD'09
 - Prediction of $f_1(0)$ in semileptonic hyperon decaysJM et al., PRD'09

- Employs a Lorentz covariant baryon chiral Lagrangian
 - Consistent power-counting in *d*-reg: EOMS scheme Fuchs et al., PRD'03 \overline{MS} is extended to absorb the breaking pieces into a finite set of LECs
- **2** $\epsilon \gtrsim \delta = M_D M_B \rightarrow \text{Decuplet included}$ as relativistic Rarita-Schwinger fields
 - Spurious DOF of the spin-3/2 field are filtered Pascalutsa, PLB'01
 - EOMS scheme adapted to decuplet contributions JM et al., PLB'09
- **③** Heavy-baryon results recovered in the non-relativistic $1/M_B$ expansion
 - Covariant approach resums a tower of relativistic corrections required by Lorentz invariance and analyticity
 - No new parameters or LECs are included!
 - Understanding of SU(3)_F of the baryon octet magnetic moments JM et al., PRL'08, PLB'09
 - Prediction of the decuplet electromagnetic structure JM et al., PRD'09
 - Prediction of $f_1(0)$ in semileptonic hyperon decaysJM et al., PRD'09

Baryon masses in χ PT: Beyond Gell-Mann Okubo formulas

• At tree-level: LO contribution

$$\mathcal{L}_{B}^{(2)} = b_{0}\langle \chi_{+} \rangle \langle \bar{B}B \rangle + b_{D} \langle \bar{B}\{\chi_{+}, B\} \rangle + b_{F} \langle \bar{B}[\chi_{+}, B] \rangle,$$

$$\mathcal{L}_D^{(2)} = rac{\gamma_0}{6} \, \overline{T}_\mu^{abc} g^{\mu
u} T_
u^{abc} \langle \chi_+
angle + rac{\gamma_D}{2} \, \overline{T}_\mu^{abc} g^{\mu
u} \left(\chi_+, T_
u
ight)^{abc},$$

SU(3)-breaking $\delta M_B \sim m_q$ leads to the Gell-Mann-Okubo mass formulas:

$$3M_{\Lambda} + M_{\Sigma} - 2(M_N + M_{\Xi}) = 0$$
$$M_{\Sigma^*} - M_{\Delta} = M_{\Xi^*} - M_{\Sigma^*} = M_{\Omega^-} - M_{\Xi^-}$$

• Loops provide the NLO contribution SU(3)-breaking beyond GMO formulas!

Low-lying baryon masses: Experimental data

	M _N	M_{Λ}	MΣ	M_{\equiv}	M_{B0}^{eff}	b _D	b _F
GMO	942(2)	1115(1)	1188(4)	1325(3)	1192(5)	0.060(4)	-0.213(2)
HB	939(2)	1116(1)	1195(4)	1315(3)	2422(5)	0.412(4)	-0.781(2)
Cov.	941(2)	1116(1)	1190(4)	1322(3)	1840(5)	0.199(4)	-0.530(2)
Expt.	940(2)	1116(1)	1193(5)	1318(4)		_	

• Masses in MeV, LECs in GeV⁻¹; errors of Expt. describes isospin splittings

- LO and NLO in HB and Cov. approaches describe the splittings very well
 - Fit of **3** parameters to **4** data points: $M_{B0}^{eff} = M_{B0} b_0(4m_K^2 + 2m_\pi^2)$, b_D , b_f
 - This is despite of the LARGE NLO loop-corrections (~hundreds MeV)
 - ▶ The *SU*(3)_{*F*}-structure of the loops is not accidental, Jenkins et al.,PRD'10

• Similar pattern for the decuplet masses: Fit of 2 parameters to 4 data points $M_{D0}^{eff} = 1519(2)$ MeV, $t_D = -0.694(2)$ GeV⁻¹

Low-lying baryon masses: Experimental data

	M _N	M_{Λ}	MΣ	M≘	M_{B0}^{eff}	b _D	b _F
GMO	942(2)	1115(1)	1188(4)	1325(3)	1192(5)	0.060(4)	-0.213(2)
HB	939(2)	1116(1)	1195(4)	1315(3)	2422(5)	0.412(4)	-0.781(2)
Cov.	941(2)	1116(1)	1190(4)	1322(3)	1840(5)	0.199(4)	-0.530(2)
Expt.	940(2)	1116(1)	1193(5)	1318(4)		_	

• Masses in MeV, LECs in GeV⁻¹; errors of Expt. describes isospin splittings

- LO and NLO in HB and Cov. approaches describe the splittings very well
 - Fit of **3** parameters to **4** data points: $M_{B0}^{eff} = M_{B0} b_0(4m_K^2 + 2m_\pi^2)$, b_D , b_f
 - This is despite of the LARGE NLO loop-corrections (~hundreds MeV)
 - ▶ The SU(3)_F-structure of the loops is not accidental, Jenkins et al., PRD'10

• Similar pattern for the decuplet masses: Fit of 2 parameters to 4 data points $M_{D0}^{eff} = 1519(2)$ MeV, $t_D = -0.694(2)$ GeV⁻¹

Low-lying baryon masses: Experimental data

	M _N	M_{Λ}	MΣ	M_{\equiv}	M_{B0}^{eff}	b _D	b _F
GMO	942(2)	1115(1)	1188(4)	1325(3)	1192(5)	0.060(4)	-0.213(2)
HB	939(2)	1116(1)	1195(4)	1315(3)	2422(5)	0.412(4)	-0.781(2)
Cov.	941(2)	1116(1)	1190(4)	1322(3)	1840(5)	0.199(4)	-0.530(2)
Expt.	940(2)	1116(1)	1193(5)	1318(4)		_	

Masses in MeV, LECs in GeV⁻¹; errors of Expt. describes isospin splittings

- LO and NLO in HB and Cov. approaches describe the splittings very well
 - Fit of 3 parameters to 4 data points: $M_{B0}^{eff} = M_{B0} b_0(4m_K^2 + 2m_\pi^2)$, b_D , b_I
 - This is despite of the LARGE NLO loop-corrections (~hundreds MeV)
 - ▶ The *SU*(3)_{*F*}-structure of the loops is not accidental, Jenkins et al.,PRD'10

• Similar pattern for the decuplet masses: Fit of **2** parameters to **4** data points $M_{D0}^{eff} = 1519(2) \text{ MeV}, \qquad t_D = -0.694(2) \text{ GeV}^{-1}$

- Allows to disentangle the LECs b_0 and M_{B0} (t_0 and M_{D0})
 - Extraction of b_0 and $t_0 \rightarrow$ **Prediction** of σ_{π} and σ_s terms
- Test covariant approach as a framework to interpret LQCD
- IQCD calculation: PACS-CS (Aoki et al., PRD'08)
 - Contains more points close to the χ -limit
 - One of the results almost on the physical point $m_{\pi} = 156$ MeV
 - Allows extrapolation on the strange quark mass
- Complementary analysis: LHPC (Walker-Loud et al., PRD'08)
 - Extrapolation from $m_{\pi} \simeq 300$ MeV
 - ► Hint on *Universality*
- Both collaborations find problems in the extrapolation with HB χ PT Only good extrapolation found with vanishing meson-baryon couplings (loops): linear GMO (LO)

- Allows to disentangle the LECs b_0 and M_{B0} (t_0 and M_{D0})
 - Extraction of b_0 and $t_0 \rightarrow$ **Prediction** of σ_{π} and σ_s terms

• Test covariant approach as a framework to interpret LQCD

- IQCD calculation: PACS-CS (Aoki et al., PRD'08)
 - \blacktriangleright Contains more points close to the $\chi\text{-limit}$
 - One of the results almost on the physical point $m_{\pi}=156$ MeV
 - Allows extrapolation on the strange quark mass
- Complementary analysis: LHPC (Walker-Loud et al., PRD'08)
 - Extrapolation from $m_{\pi} \simeq 300$ MeV
 - ► Hint on *Universality*
- Both collaborations find problems in the extrapolation with HB χ PT Only good extrapolation found with vanishing meson-baryon couplings (loops): linear GMO (LO)

- Allows to disentangle the LECs b_0 and M_{B0} (t_0 and M_{D0})
 - Extraction of b_0 and $t_0 \rightarrow$ **Prediction** of σ_{π} and σ_s terms

• Test covariant approach as a framework to interpret LQCD

- IQCD calculation: PACS-CS (Aoki et al., PRD'08)
 - \blacktriangleright Contains more points close to the $\chi\text{-limit}$
 - One of the results almost on the physical point $m_{\pi} = 156$ MeV
 - Allows extrapolation on the strange quark mass
- Complementary analysis: LHPC (Walker-Loud et al., PRD'08)
 - Extrapolation from $m_\pi \simeq 300$ MeV
 - Hint on Universality
- Both collaborations find problems in the extrapolation with HB χ PT Only good extrapolation found with vanishing meson-baryon couplings (loops): linear GMO (LO)

- Allows to disentangle the LECs b_0 and M_{B0} (t_0 and M_{D0})
 - Extraction of b_0 and $t_0 \rightarrow$ **Prediction** of σ_{π} and σ_s terms

• Test covariant approach as a framework to interpret LQCD

- IQCD calculation: PACS-CS (Aoki et al., PRD'08)
 - \blacktriangleright Contains more points close to the $\chi\text{-limit}$
 - One of the results almost on the physical point $m_{\pi} = 156$ MeV
 - Allows extrapolation on the strange quark mass
- Complementary analysis: LHPC (Walker-Loud et al., PRD'08)
 - Extrapolation from $m_\pi \simeq 300$ MeV
 - Hint on Universality
- Both collaborations find problems in the extrapolation with HB χ PT Only good extrapolation found with vanishing meson-baryon couplings (loops): linear GMO (LO)

Fit to LQCD: Strategy

- Strategy: Fit LECs comparing $M_B^{(3)}(m_{\pi,i}, M_{K,i})$ in EOMS to $M_B^{LQCD}(i)$
 - Masses in physical units obtained using the lattice spacing a
 - Choose any point (i) where $m_{\pi,i}$ and $m_{K,i} \lesssim 600 \text{ MeV} \rightarrow 3 \text{ or } 2 \text{ per baryon}$
 - ▶ Fit of *M*_{B0}, *b*₀, *b*_D, *b*_F, *M*_{D0}, *t*₀, *t*_D (7 LECs) to
 - * 24 PACS-CS points
 - * 16 LHPC points
 - Fit of the octet and decuplet masses connected through octet-decuplet loops
 - Two kind of fits: WITHOUT (χ^2) and WITH $(\overline{\chi^2})$ Expt. values
- Errors: Include statistical and propagated from a
 - Statistical errors uncorrelated
 - Errors from a are fully correlated: χ^2 with inverse of correlation matrix
 - Theoretical error estimated taking 1/2 of the difference between NLO and LO
- Other systematics
 - Finite volume corrections computed in the covariant framework
 - Ignore discretization errors
 - Phenomenological meson-baryon couplings used!

Fit to LQCD: Strategy

- Strategy: Fit LECs comparing $M_B^{(3)}(m_{\pi,i}, M_{K,i})$ in EOMS to $M_B^{LQCD}(i)$
 - Masses in physical units obtained using the lattice spacing a
 - Choose any point (*i*) where $m_{\pi,i}$ and $m_{K,i} \leq 600 \text{ MeV} \rightarrow 3 \text{ or } 2 \text{ per baryon}$
 - Fit of M_{B0} , b_0 , b_D , b_F , M_{D0} , t_0 , t_D (7 LECs) to
 - * 24 PACS-CS points
 - * 16 LHPC points
 - Fit of the octet and decuplet masses connected through octet-decuplet loops
 - Two kind of fits: WITHOUT (χ^2) and WITH (χ^2) Expt. values
- Errors: Include statistical and propagated from a
 - Statistical errors uncorrelated
 - Errors from *a* are fully correlated: χ^2 with inverse of correlation matrix
 - Theoretical error estimated taking 1/2 of the difference between NLO and LO
- Other systematics
 - Finite volume corrections computed in the covariant framework
 - Ignore discretization errors
 - Phenomenological meson-baryon couplings used!

Fit to LQCD: Strategy

- Strategy: Fit LECs comparing $M_B^{(3)}(m_{\pi,i}, M_{K,i})$ in EOMS to $M_B^{LQCD}(i)$
 - Masses in physical units obtained using the lattice spacing a
 - Choose any point (*i*) where $m_{\pi,i}$ and $m_{K,i} \lesssim 600 \text{ MeV} \rightarrow 3 \text{ or } 2 \text{ per baryon}$
 - Fit of M_{B0} , b_0 , b_D , b_F , M_{D0} , t_0 , t_D (7 LECs) to
 - * 24 PACS-CS points
 - * 16 LHPC points
 - Fit of the octet and decuplet masses connected through octet-decuplet loops
 - Two kind of fits: WITHOUT (χ^2) and WITH $(ar{\chi^2})$ Expt. values
- Errors: Include statistical and propagated from a
 - Statistical errors uncorrelated
 - Errors from *a* are fully correlated: χ^2 with inverse of correlation matrix
 - Theoretical error estimated taking 1/2 of the difference between NLO and LO

Other systematics

- Finite volume corrections computed in the covariant framework
- Ignore discretization errors
- Phenomenological meson-baryon couplings used!

Chiral extrapolation of PACS-CS: Numerics

	GMO	HB	Covariant	Expt.
M _N	971(22)	764(21)	893(19)(39)	940(2)
M_{Λ}	1115(21)	1042(20)	1088(20)(14)	1116(1)
M_{Σ}	1165(23)	1210(22)	1178(24)(7)	1193(5)
M_{\equiv}	1283(22)	1392(21)	1322(24)(20)	1318(4)
M_{Δ}	1319(28)	1264(22)	1222(24)(49)	1232(2)
M_{Σ^*}	1433(27)	1466(22)	1376(24)(29)	1385(4)
$M_{\equiv *}$	1547(27)	1622(23)	1531(25)(8)	1533(4)
$M_{\Omega^{-}}$	1661(27)	1733(25)	1686(28)(13)	1672(1)
$\chi^2_{\rm d.o.f.}$	0.63	9.2	2.1	
$\bar{\chi}^2_{\rm d.o.f.}$	4.2	36.6	2.8	

• Covariant $B\chi PT^{(3)}$ gives a **good extrapolation** of baryon masses $\chi^2 \sim 2$.

- Describes properly $m_\phi \lesssim 600 \; {
 m MeV}$
- Sizable non-analytical effect still below $m \le 156$ MeV!
- ▶ LO and NLO SU(3)-breaking chiral corrections show a good convergence

- Bars: PACS-CS fitted
- Boxes: PACS-CS no fitted
- **Diamonds:** $\chi PT^{(3)}$
- Filled diamond: Extrap. Slightly shifted to the right
- Crosses: experiment

Chiral extrapolation: Values of the LECs

• We compare the LECs obtained fitting Expt. OR LQCD results

Octet

	<i>M</i> _{B0} [GeV]	$b_0 \; [{ m GeV}^{-1}]$	M_{B0}^{eff} [GeV]	$b_D \; [{ m GeV}^{-1}]$	$b_F \; [\text{GeV}^{-1}]$
Expt.	-	-	1.840(5)	0.199(4)	-0.530(2)
PACS-CS	0.756(32)	-0.978(38)	1.76(7)	0.190(24)	-0.519(19)
LHPC	0.780(31)	-1.044(45)	1.85(8)	0.236(24)	-0.523(21)

Decuplet

	<i>M</i> _{D0} [GeV]	$t_0 \; [\text{GeV}^{-1}]$	$M_{D0}^{e\!f\!f}$ [GeV]	$t_D \; [\text{GeV}^{-1}]$
Expt.	-	-	1.519(2)	-0.694(2)
PACS-CS	954(37)	-1.05(8)	1.49(8)	-0.682(20)
LHPC	944(42)	-1.28(8)	1.60(8)	-0.609(14)

• LECs are consistent with each other!

Chiral extrapolation of PACS-CS: σ -terms

• The σ -terms can be obtained via the Hellman-Feynman theorem

$$\sigma_{\pi B} = m_{u,d} \frac{\partial M_B}{\partial m_{u,d}} \qquad , \qquad \sigma_{sB} = m_s \frac{\partial M_B}{\partial m_s}$$

- Preliminary predictions!
 - Octet

	N	٨	Σ	Ξ
σ_{π} PACS-CS	59(2)(17)	39(1)(10)	26(2)(5)	13(2)(1)
σ_{π} LHPC	61(2)(21)	41(2)(13)	25(2)(7)	14(2)(3)
σ_s PACS-CS	-7(23)(25)	123(26)(35)	157(27)(44)	264(31)(50)
σ_s LHPC	-4(20)(25)	103(19)(8)	164(23)(16)	234(23)(21)

- The σ terms are important for super-simetric dark matter searches Ellis et al., PRD'08, Giedt et al., PRL'09
- Our results favor small values for σ_s and relatively large for σ_π
- More accurate prediction is in progress!

Summary and Outlook

Conclusions

- ► SU(3)_F-B_{\chi}PT describes the quark mass dependence of LQCD results on the baryon masses and provides a reliable extrapolation to the physical point
 - \star Non-analytic contributions are important even from $m_\pi \simeq 156$ MeV
 - \star Valid up-to $m_{\phi} \lesssim$ 600 MeV
 - Important cancellations occur between different orders in the HB expansion Highlights the importance of Lorentz Invariance in SU(3)_F approach!
- Extraction of LECs from LQCD consistent with phenomenology
- Phenomenological applications: Prediction of the σ-terms
- Outlook
 - Simultaneous analysis of current and forthcoming world LQCD "data"
 - * Inclusion of the meson-baryon couplings in the fits
 - * Accurate prediction of σ -terms
 - * Universality of the actions under $SU(3)_F$ -B χ PT
 - Extrapolation of baryon structure
 - * Electromagnetic structure
 - * Axial couplings

* ...

Summary and Outlook

Conclusions

- ► SU(3)_F-B_{\chi}PT describes the quark mass dependence of LQCD results on the baryon masses and provides a reliable extrapolation to the physical point
 - \star Non-analytic contributions are important even from $m_\pi \simeq 156$ MeV
 - \star Valid up-to $m_{\phi} \lesssim$ 600 MeV
 - * Important cancellations occur between different orders in the HB expansion Highlights the importance of Lorentz Invariance in SU(3)_F approach!
- Extraction of LECs from LQCD consistent with phenomenology
- Phenomenological applications: Prediction of the σ-terms

Outlook

- Simultaneous analysis of current and forthcoming world LQCD "data"
 - * Inclusion of the meson-baryon couplings in the fits
 - * Accurate prediction of σ -terms
 - ★ Universality of the actions under SU(3)_F-BχPT
- Extrapolation of baryon structure
 - ★ Electromagnetic structure
 - * Axial couplings
 - * ...