Exploration of the phase structure of $SU(N_c)$ lattice gauge theory with many Wilson fermions at strong coupling (PRD80('09)074508)

Kei-ichi Nagai^{*a,b*}, Maria Georgina Carrillo-Ruiz^{*b*}, Gergana Koleva^{*b*} and Randy Lewis^{*b*}

^{*a*}KEK, Theory Center, Tsukuba, Japan

^bDepartment of Physics and Astronomy, York University, Toronto, Canada

June 17, 2010

Introduction

Perturbation theory allows for a non-trivial IR Fixed Point (IRFP) Banks and Zaks, NPB196('82)

$$egin{aligned} eta(g) &= -b_0 g^3 - b_1 g^5 + \cdots, \ b_0 &= rac{1}{(4\pi)^2} \left(rac{11}{3} N_c - rac{2}{3} N_f
ight), \, b_1 &= rac{1}{(4\pi)^4} \left[rac{34}{3} N_c^2 - (rac{13}{3} N_c - rac{1}{N_c}) N_f
ight]. \end{aligned}$$

■ In *SU*(3),

- $N_f \leq 8 \rightarrow \text{confinement}$
- $9 \le N_f \le 16 \rightarrow \text{conformal window}$
- $17 \le N_f \rightarrow$ free theory

In SU(2),

- $N_f \leq 5 \rightarrow \text{confinement}$
- $6 \le N_f \le 10 \rightarrow \text{conformal window}$
- $11 \le N_f \rightarrow$ free theory

Beyond perturbation theory \Rightarrow Lattice Gauge Theory Wilson fermion

 \rightarrow no $\chi-\text{sym.}$ but Aoki-phase and Sharpe-Singleton scenario

Standard conjecture of the phase structure in the strong coupling limit for Wilson fermions

S. Aoki, PRD30('84)2653, PRL57('86)3136, PTP.(Suppl)**122**('96)179. \rightarrow famous Aoki phase (parity-flavour broken phase)

The phase boundary at $\beta = 0$ in the calculation by strong coupling expansion and large N_c expansion;

$$\cosh(m_{\pi}) = 1 + rac{(1 - 16\kappa^2)(1 - 4\kappa^2)}{8\kappa^2(1 - 6\kappa^2)}$$

Then, the critical κ or $m_{\pi} = 0$ (and $m_q = 0$): $\kappa_c = \frac{1}{4}$

•
$$\kappa < \kappa_c \Rightarrow$$
 Confinement phase:
 $m_{\pi}^{\pm} = m_{\pi}^0, m_{\pi}^2 \propto 2m_q (= \frac{1}{\kappa} - \frac{1}{\kappa_c})$
• $\kappa > \kappa_c \Rightarrow$ Aoki phase:
 $m_{\pi}^{\pm} \neq m_{\pi}^0, m_{\pi}^{\pm} = 0$
 $\langle \psi \gamma_5 1 \psi \rangle = 0 \ \langle \bar{\psi} \gamma_5 \tau_3 \psi \rangle \neq 0$ for N_f =even.

Our work is motivated by the paper of Tsukuba, Y. Iwasaki *et al*, PRD69('04), PRL69('92).

- Their result of SU(3)
 - $N_f \leq 6 \rightarrow \text{confinement}$
 - **7** $\leq N_f \leq 16 \rightarrow \text{conformal window}$
 - $17 \leq N_f \rightarrow \text{free theory}$
- \blacklozenge Their prediction of SU(2)
 - $N_f \leq 2 \rightarrow \text{confinement}$
 - **3** $\leq N_f < \cdots \rightarrow$ conformal window

FIG. 2. Results for $N_f = 18-6$. (a) Number of iterations needed for the quark matrix inversion by CG. (b) $W(1 \times 1)$.

Y. Iwasaki *et al*, PRL69('92). $N_f = 6$ in $SU(3) \rightarrow$ They didn't compute m_{π} itself. Instead, they monitored N_{CG} in MD of R-algorithm. $N_{CG} = O(10^4)$ in thermalizing \Rightarrow signal of massless pion!!

About SU(2) at $\beta = 0$ and $\kappa = 0.25$, as a function of N_f

Left: Plaquette and Polyakov loop. Right: m_{π}^2 and m_q at $\kappa = 0.25$.

Y. Iwasaki *et al*, PRD69('04). $N_f = 2 \rightarrow$ They monitored N_{CG} in MD of R-algorithm. $N_{CG} = O(10^4)$ in thermalizing, not for thermalized ensemble. Expectation: $m_{\pi} = 0$ at $\kappa = 0.25$ for $N_f = 2$ in SU(2).

- We simulate the case of many flavours in SU(2), to study m_{π}^2 and m_q vs. κ .
- We also study $N_f = 6$ at $\kappa = 0.25$ in SU(3): $m_{\pi} = 0$ or $\neq 0$. \rightarrow for the reference of the $N_f = 2$ case in SU(2)

Lattice actions

♦ S = S_G + ∑_{f=1}^{N_f} S_W^f.
♦ The Wilson gauge action:
♦ The Wilson fermion action (in the degenerated case):
♦ The partition function: Z = ∫[dU_µ(x)] (det(D[†]_WD_W))^{N_f/2} exp(S_G) where D_W is the kernel of the fermion action S_W = ψ(x)D_W(x, y)ψ(y).

♣ Simulation → standard HMC only for the even number of the flavours with $\Delta \tau \cdot N_{MD} = 1$.

Simulation details

- $\beta = 0.0$ and 2.0
- Lattice size:
- $6 \times 6 \times 12 \times 12$ at $\beta = 0.0$ in SU(2) and SU(3)
- $8 \times 8 \times 16 \times 16$ at $\beta = 2.0$

For the check of the finite size effect; $8^2 \times 16^2$ and $12^2 \times 24^2$

 $(12^3 \times 24)$ for some flavours.

Periodic boundary condition on $N_t \ge N_s$ setup

After thermalizing, we compute the observables of 50~100 trajectories with 4~5 interval.

Observables:

 m_{π}^2 , m_{ρ} , plaquette value, the axial-Ward-Takahashi identity quark mass ($m_q^{\text{AWI}} = \frac{\nabla_4 \langle \sum_{\vec{x}} A_4(\vec{x},t) P(0) \rangle}{2 \langle \sum_{\vec{x}} P(\vec{x},t) P(0) \rangle}$), Polyakov loop, Creutz ratio, the condensate (or the propagator norm), the lowest eigenvalue, $m_q^{\text{AWI}}(t)$ and $\langle S(t)S(0) \rangle$ vs. *t*.

Plaquette value of SU(2) at $\beta = 0$ for various flavours

For $N_f \ge 6$, 2-state signal (Hysteresis, meta-stability)

For $N_f = 4$, no 2-state signal. (The $N_f = 2$ case is inconclusive.)

m_π^2 and m_q^{AWI} vs. $1/\kappa$ (Close-up of small $1/\kappa$ region)

 $\blacksquare m_{\pi}^{2}(\text{unknown}) > m_{\pi}^{2}(\text{confine}); m_{q}^{AWI}(\text{unknown}) < m_{q}^{AWI}(\text{confine})$

- No negative quark mass \rightarrow not Sharpe-Singleton scenario (??) $(m_{\pi}^2 \neq f(1/\kappa)$: similar behaviour with Iwasaki's data.)
- For $N_f > 0$, m_{π}^2 and m_q depend on N_f . \rightarrow opposed to Aoki's.

Lattice size effect of m_{π}^2 and m_q^{AWI} in $N_f = 0, 6$ and 12

- $N_f = 0$ case equals to the Aoki's prediction ($\kappa_c = 0.25$). $N_f > 0$ case deviates from Aoki's prediction of m_{π}^2 and m_q .
- κ_c belongs to the massive pion phase, if it exists. no κ_c where $m_{\pi}^2 = 0$ and $m_q^{AWI} = 0!!$

Phase in SU(2) with $N_f = 6$ data of the negative κ

Symmetric for $\frac{1}{\kappa} = 0$ ($\kappa = \infty$)

- We don't find the massless pion phase. ⇒ no Aoki phase?
- The existence of κ_c , namely $m_{\pi} = 0$ ($m_q = 0$), is not trivial. \rightarrow The extrapolation to $m_{\pi} = 0$ is not valid.

The lowest Eigenvalue: $\mu = \sqrt{\lambda_0(H_W^2)}$ vs. $1/\kappa$

Not small EV in the high-plaquette phase. \downarrow No Aoki phase?? $\leftarrow \langle \bar{\psi}\gamma_5\tau_3\psi \rangle$ from Banks-Casher relation

In the large extent, Polyakov loop is consistent with that in $N_f = 0$ \rightarrow not deconfinement phase (??)

Creutz ratio, $\chi(1,1)$ vs. κ

In the massive pion phase, $\chi(1,1)$ is small and stable.

 \Rightarrow String tensionless in the massive pion phase??

 $m_{
ho} \text{ (and } m_{\pi}/m_{
ho} \text{) vs. } 1/\kappa, \quad m_q^{AWI}(t) \text{ vs. } t,$ The propagator norm: $\mathcal{N} = (2\kappa)^2 \sum_{\vec{x},t} \left\langle P(\vec{x},t)P(\vec{0},0) \right\rangle \sim \frac{1}{m_{\pi}^2}$ $m_{
ho} \text{ (and } m_{\pi}/m_{
ho} \text{) vs. } 1/\kappa, \quad m_q^{AWI}(t) \text{ vs. } t,$ The propagator norm: $\mathcal{N} = (2\kappa)^2 \sum_{\vec{x},t} \left\langle P(\vec{x},t)P(\vec{0},0) \right\rangle \sim rac{1}{m_{\pi}^2}$

Skipped

$\langle S(t)S(0)\rangle$ vs. t

Figure: Size dependence of $\langle S(t)S(0) \rangle$ vs. T/a in the unknown-phase for $N_f = 6$ at $\kappa_f = 0.2125$. The fit is done by cosh-function. Why is the signal clear? Why does $\langle S(t)S(0) \rangle$ show the good cosh-fit?

- How is the case of $N_f = 6$ (at $\kappa = 0.25$)?
- Check of SU(3) case (plaquette value) We re-compute it by our code and by MILC code.
- Comparison with Iwasaki's data
 - \rightarrow We will find the discrepancy from their conclusion.

Plaquette values of SU(3)

- 2-state signal at $N_f = 8$
- Not small value in $N_f = 6 \rightarrow$ opposed to Iwasaki's result Why?

Plaquette history by using our code and MILC code

- Our code: HMC with the periodic boundary (Pbc in Fig.)
 MILC code: R-algorithm with the anti-periodic boundary (Apbc)
- cold start of $N_f = 8 \rightarrow N_f = 7 \rightarrow N_f = 6$
- Consistent result (not small value), except of the N_f = 6 case on 8² × 10 × 4.

m_π^2 and m_q^{AWI} vs. $1/\kappa$

• 2-state signal at $N_f = 8$. $\kappa_c \neq 0.25$ for giving $m_{\pi} = 0$ and $m_q^{AWI} = 0$, if there is κ_c . no region of $m_{\pi} = 0$ and $m_q^{AWI} = 0$

■ In $N_f = 6$, $m_{\pi}^2 > 0 \rightarrow$ opposed to Iwasaki's data No problem! Our data is obtained in thermalized conf. Iwasaki's data is not (and is in $N_t = 4 < N_s$). We explored the phase structure of SU(2) and SU(3) lattice gauge theories with many Wilson fermions at $\beta = 0$.

- 2-phases. $\kappa_c \neq 0.25$ if it exists. No massless pion. Deviation from the Aoki's result in the dynamical case.
- Conjecture: In large N_f Wilson, no ordinary Aoki phase, no Sharpe-Singleton, no deconfinement.
 The N_f = 2 case in SU(2) needs further investigation.
 perhaps using twisted mass Wilson fermions
- N_f = 6 in SU(3) is not in the confinement region. (different result from Iwasaki's conclusion) Then, N^c_f is 5 or less. Or, to obtain N^c_f at the strong coupling is difficult.

List of phases:

. . .

Deconfinement phase? Sharpe-Singleton-Bitar scenario? Coulomb phase? Higgs(NJL-BCS) phase? Strong-Weak transition? (due to $\beta_{eff} = \beta + c_1 N_f \kappa^4 + ...)$ ordinary Aoki phase? or alternative Aoki phase?

Advantage of β = 0 is to be independent of lattice gauge action. Only the fermion effect to the vacuum can be seen.
To make clear the phases of Wilson fermions, we intend to investigate of N_f = 2(and larger) in SU(2) with twisted mass term (μγ₅τ₃) and with the limit of μ → 0 at β = 0.
⇒ m_π = 0 or ≠ 0? ⟨ψ̄γ₅τ₃ψ⟩ =?
⇒ In progress

Discussion: What is the unknown phase?

• Our finding in PRD80('09)074508 presented in this talk (Plaq., m_{π}^2 and m_q behaviours) \rightarrow Indication of universal phenomena **as** (1st order) Bulk phase transition at strong coupling \leftarrow the appearance of high- and low-plaquette phase

- Y. Iwasaki *et al*, PRL69('92)21, PRD69('04)014507.
 → deconfining
- JLQCD (S. Aoki *et al*), PRD72('05)054510.
 - $N_f = 3$ Clover fermion \rightarrow unphysical phase
- F.R. Brown *et al*, PRD46('92)5655.
 - $\rightarrow N_f = 8$ staggered fermions
- T. DeGrand et al, arXiv:1006.0707 [hep-lat].

 \rightarrow symmetric repr. of Wilson with SF

• *c.f.* F. Farchioni *et al*, Eur.Phys.J.C39('05)421. \rightarrow metastability in $N_f = 2$ tmQCD at weak coupling Additional data

At $\beta = 2$

Figure: Plaquette value as a function of $1/\kappa$ at $\beta = 2$ in SU(2). no 1st order transition

At $\beta = 2$

Figure: m_{π}^2 and m_q^{AWI} as a function of $1/\kappa$ at $\beta = 2$ in SU(2). There seems to be the confinement phase. The m_q^{AWI} crosses the zero smoothly.

At $\beta = 2$

Figure: the fit result of m_{π}^2 at $\beta = 2$ in SU(2). The fitting in both side for the minimum point is very well.

Creutz ratio $\chi(2,2)$ in SU(2) at $\beta = 0$

In the massive pion phase, $\chi(2,2)$ is small and stable.

In SU(2) at $\beta = 0$: $N_{CG}(\tau) = \frac{1}{N_{MD}} \sum_{i=1}^{N_{MD}} n_i^{CG}(\tau)$

Figure: The plaquette and $N_{CG}(\tau)$ versus trajectory index τ in SU(2) on $8^2 \times 16^2$ at $\beta = 0$ and $\kappa = 0.215$ with $N_f = 6$.

In SU(3) at $\beta = 0$: $\overline{N_{CG}(\tau)} = \frac{1}{N_{MD}} \sum_{i=1}^{N_{MD}} n_i^{CG}(\tau)$

Figure: $N_{CG}(\tau)$ versus τ in SU(3) with $N_f = 6$ on $6^2 \times 12^2$ at $\beta = 0$, $\kappa = 1/4$ and $N_{MD} = 200$.

$m_ ho$ and $m_\pi/m_ ho$

2-state signal in $m_{
ho}$ and $m_{\pi}/m_{
ho}$

FIG. 1. Results for $N_f = 18$ at $\beta = 0.0$ on the T = 4 lattice with $\Delta \tau = 0.01$. (a) $W(1 \times 1)$ (squares) and Polyakov line (circles). The large symbols are for long runs. (b) m_π^2 (solid circles) and $2m_q$ (open circles).

Y. Iwasaki *et al*, PRL69('92). : $N_f = 18$ in SU(3)

In confinement phase, the data obey to Aoki's line. Polyakov loop > 0 for $1/\kappa < 1/\kappa_d \rightarrow$ Deconfinement phase $m_{\pi} > 0$ for $1/\kappa < 1/\kappa_d$.

No negative quark mass $(m_{\pi}^2 \neq 2Bm_q)$

FIG. 4. Results for $N_f = 7$ at $\beta = 0.0$: Circles, T = 4; triangles, T = 6; squares, T = 8; and diamonds, T = 18. (a) $W(1 \times 1)$. (b) m_f^2 and $2m_q$.

Y. Iwasaki *et al*, PRL69('92). $N_f = 7 \text{ in } SU(3) \rightarrow \text{ same with } N_f = 18 \text{ case}$ In the large N_t , it seems the data deviates from the line. They didn't comment about it.

m_π^2 and m_q^{AWI} vs. $1/\kappa$ (in the wide region of $1/\kappa$)

■ In large $1/\kappa$, m_{π}^2 and m_q^{AWI} are almost independent of N_f . → The heavy mode does not affect the vacuum.

FIG. 4. Results for $N_f = 7$ at $\beta = 0.0$: Circles, T = 4; triangles, T = 6; squares, T = 8; and diamonds, T = 18. (a) $W(1 \times 1)$. (b) m_t^2 and $2m_q$.

FIG. 1. Results for $N_f = 18$ at $\beta = 0.0$ on the T = 4 lattice with $\Delta \tau = 0.01$. (a) $W(1 \times 1)$ (squares) and Polyakov line (circles). The large symbols are for long runs. (b) m_s^2 (solid circles) and $2m_e$ (open circles).

Y. Iwasaki *et al*, : $N_f = 7, 18$ in SU(3)

In confinement phase, the data obey to Aoki's line. Polyakov loop > 0 for $1/\kappa < 1/\kappa_d \rightarrow$ Deconfinement phase $m_{\pi} > 0$ for $1/\kappa < 1/\kappa_d$. No negative quark mass $(m_{\pi}^2 \neq 2Bm_q)$ $m_q^{AWI}(T/a)$ vs. T/a for $N_f = 12$ at $\kappa = 0.190$ on $6^2 \times 12^2$, $8^2 \times 16^2$ and $12^3 \times 24$

Figure: $m_a^{AWI}(t)$ for $N_f = 12$ at $\kappa = 0.190$ in high- and low-plaq. phase .

- No plateau in the high-plaquette phase (the massive pion phase)
- No negative quark mass $(m_{\pi}^2 \neq 2Bm_q) \Rightarrow$ not Sharpe-Singleton scenario ??

The propagator norm:
$$\mathcal{N} = (2\kappa)^2 \sum_{\vec{x},t} \left\langle P(\vec{x},t) P(\vec{0},0) \right\rangle \sim \frac{1}{m_{\pi}^2}$$

