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Introduction

Perturbation theory allows for a non-trivial IR Fixed Point (IRFP)
Banks and Zaks, NPB196(’82)

β(g) = −b0g3 − b1g5 + · · · ,
b0 = 1

(4π)2

( 11
3 Nc − 2

3 Nf
)
, b1 = 1

(4π)4

[
34
3 N2

c − ( 13
3 Nc − 1

Nc
)Nf

]
.

In SU(3),
Nf ≤ 8→ confinement
9 ≤ Nf ≤ 16→ conformal window
17 ≤ Nf → free theory

In SU(2),
Nf ≤ 5→ confinement
6 ≤ Nf ≤ 10→ conformal window
11 ≤ Nf → free theory

Beyond perturbation theory⇒ Lattice Gauge Theory
Wilson fermion
→ no χ−sym. but Aoki-phase and Sharpe-Singleton scenario



Standard conjecture of the phase structure in the
strong coupling limit for Wilson fermions

S. Aoki,
PRD30(’84)2653, PRL57(’86)3136, PTP.(Suppl)122(’96)179.
→ famous Aoki phase (parity-flavour broken phase)

The phase boundary at β = 0 in the calculation by strong
coupling expansion and large Nc expansion;

cosh(mπ) = 1 +
(1− 16κ2)(1− 4κ2)

8κ2(1− 6κ2)
.

Then, the critical κ or mπ = 0 (and mq = 0): κc = 1
4

κ < κc ⇒ Confinement phase:
m±π = m0

π, m2
π ∝ 2mq(=

1
κ − 1

κc
)

κ > κc ⇒ Aoki phase:
m±π 6= m0

π, m±π = 0
〈ψ̄γ51ψ〉 = 0 〈ψ̄γ5τ3ψ〉 6= 0 for Nf =even.



Our Motivation

Our work is motivated by the paper of Tsukuba,
Y. Iwasaki et al, PRD69(’04), PRL69(’92).

♣ Their result of SU(3)

Nf ≤ 6→ confinement
7 ≤ Nf ≤ 16→ conformal window
17 ≤ Nf → free theory

♠ Their prediction of SU(2)

Nf ≤ 2→ confinement
3 ≤ Nf < · · · → conformal window



Y. Iwasaki et al, PRL69(’92).
Nf = 6 in SU(3)→ They didn’t compute mπ itself.

Instead, they monitored NCG in MD of R-algorithm.
NCG = O(104) in thermalizing⇒ signal of massless pion!!



About SU(2) at β = 0 and κ = 0.25, as a function of Nf

Left: Plaquette and Polyakov loop. Right: m2
π and mq at κ = 0.25.

Y. Iwasaki et al, PRD69(’04).
Nf = 2→ They monitored NCG in MD of R-algorithm.
NCG = O(104) in thermalizing, not for thermalized ensemble.
Expectation: mπ = 0 at κ = 0.25 for Nf = 2 in SU(2).



Target of our job

We simulate the case of many flavours in SU(2),
to study m2

π and mq vs. κ.
We also study Nf = 6 at κ = 0.25 in SU(3): mπ = 0 or 6= 0.
→ for the reference of the Nf = 2 case in SU(2)



Lattice actions

♠ S = SG +
∑Nf

f=1 Sf
W .

♠ The Wilson gauge action:
♠ The Wilson fermion action (in the degenerated case):

♠ The partition function: Z =
∫

[dUµ(x)]
(

det(D†WDW)
)Nf

2 exp(SG)

where DW is the kernel of the fermion action
SW = ψ̄(x)DW(x, y)ψ(y).

♣ Simulation→ standard HMC only for the even number of the
flavours with ∆τ · NMD = 1.



Simulation details

♣ β = 0.0 and 2.0
♣ Lattice size:
6× 6× 12× 12 at β = 0.0 in SU(2) and SU(3)
8× 8× 16× 16 at β = 2.0
For the check of the finite size effect; 82 × 162 and 122 × 242

(123 × 24) for some flavours.
♣ Periodic boundary condition on Nt ≥ Ns setup
♣ After thermalizing, we compute the observables of 50∼100
trajectories with 4∼5 interval.
♣ Observables:
m2

π, mρ, plaquette value, the axial-Ward-Takahashi identity
quark mass (mAWI

q =
∇4〈

P
~x A4(~x,t)P(0)〉

2〈P~x P(~x,t)P(0)〉 ), Polyakov loop, Creutz
ratio, the condensate (or the propagator norm), the lowest
eigenvalue, mAWI

q (t) and 〈S(t)S(0)〉 vs. t.



Plaquette value of SU(2) at β = 0 for various flavours
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For Nf ≥ 6, 2-state signal (Hysteresis, meta-stability)

For Nf = 4, no 2-state signal. (The Nf = 2 case is inconclusive.)



m2
π and mAWI

q vs. 1/κ (Close-up of small 1/κ region)
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No negative quark mass→ not Sharpe-Singleton scenario (??)
(m2

π 6= f (1/κ): similar behaviour with Iwasaki’s data.)

For Nf > 0, m2
π and mq depend on Nf . → opposed to Aoki’s.



Lattice size effect of m2
π and mAWI

q in Nf = 0, 6 and 12
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No sizable effect of lattice box.

Nf = 0 case equals to the Aoki’s prediction (κc = 0.25).
Nf > 0 case deviates from Aoki’s prediction of m2

π and mq.

κc belongs to the massive pion phase, if it exists.
no κc where m2

π = 0 and mAWI
q = 0!!



Phase in SU(2) with Nf = 6 data of the negative κ
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We don’t find the massless pion phase. ⇒ no Aoki phase?

The existence of κc, namely mπ = 0 (mq = 0), is not trivial.
→ The extrapolation to mπ = 0 is not valid.



The lowest Eigenvalue: µ =
√

λ0(H2
W) vs. 1/κ
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Not small EV in the high-plaquette phase. ⇓
No Aoki phase?? ← 〈ψ̄γ5τ3ψ〉 from Banks-Casher relation



Polyakov loop: 〈|L|〉Nf − 〈|L|〉Nf =0

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6
1/κ

0

0.05

0.1

0.15

0.2

0.25
〈|L

|〉 N
f -

 〈|
L

|〉 0

N
f
=8  (N

x
=6)

N
f
=6  (N

x
=6)

N
f
=8  (N

t
=12)

N
f
=6  (N

t
=12)

In the large extent, Polyakov loop is consistent with that in Nf = 0
→ not deconfinement phase (??)



Creutz ratio, χ(1, 1) vs. κ
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In the massive pion phase, χ(1, 1) is small and stable.
⇒ String tensionless in the massive pion phase??



mρ (and mπ/mρ) vs. 1/κ, mAWI
q (t) vs. t,

The propagator norm: N = (2κ)2 ∑
~x,t

〈
P(~x, t)P(~0, 0)

〉
∼ 1

m2
π



mρ (and mπ/mρ) vs. 1/κ, mAWI
q (t) vs. t,

The propagator norm: N = (2κ)2 ∑
~x,t

〈
P(~x, t)P(~0, 0)

〉
∼ 1

m2
π

Skipped



〈S(t)S(0)〉 vs. t
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Figure: Size dependence of 〈S(t)S(0)〉 vs. T/a in the unknown-phase
for Nf = 6 at κf = 0.2125. The fit is done by cosh-function.
Why is the signal clear?
Why does 〈S(t)S(0)〉 show the good cosh-fit?



Result of SU(3) case

How is the case of Nf = 6 (at κ = 0.25)?
Check of SU(3) case (plaquette value)

We re-compute it by our code and by MILC code.
Comparison with Iwasaki’s data
→We will find the discrepancy from their conclusion.



Plaquette values of SU(3)
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Not small value in Nf = 6→ opposed to Iwasaki’s result
Why?



Plaquette history by using our code and MILC code

Our code: HMC with the periodic boundary (Pbc in Fig.)
MILC code: R-algorithm with the anti-periodic boundary (Apbc)

cold start of Nf = 8→ Nf = 7→ Nf = 6

Consistent result (not small value),
except of the Nf = 6 case on 82 × 10× 4.
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m2
π and mAWI

q vs. 1/κ
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2-state signal at Nf = 8.
κc 6= 0.25 for giving mπ = 0 and mAWI

q = 0, if there is κc.
no region of mπ = 0 and mAWI

q = 0

In Nf = 6, m2
π > 0→ opposed to Iwasaki’s data

No problem! Our data is obtained in thermalized conf. Iwasaki’s
data is not (and is in Nt = 4 < Ns).



Summary

We explored the phase structure of SU(2) and SU(3) lattice
gauge theories with many Wilson fermions at β = 0.

2-phases. κc 6= 0.25 if it exists. No massless pion.
Deviation from the Aoki’s result in the dynamical case.
Conjecture: In large Nf Wilson, no ordinary Aoki phase, no
Sharpe-Singleton, no deconfinement.
The Nf = 2 case in SU(2) needs further investigation.

perhaps using twisted mass Wilson fermions
Nf = 6 in SU(3) is not in the confinement region.
(different result from Iwasaki’s conclusion)
Then, Nc

f is 5 or less.
Or, to obtain Nc

f at the strong coupling is difficult.



Discussion: What is the unknown phase?

♠ List of phases:
Deconfinement phase?
Sharpe-Singleton-Bitar scenario?
Coulomb phase?
Higgs(NJL-BCS) phase?
Strong-Weak transition? (due to βeff = β + c1Nfκ

4 + . . . )
ordinary Aoki phase? or alternative Aoki phase?
· · ·
♠ Advantage of β = 0 is to be independent of lattice gauge
action. Only the fermion effect to the vacuum can be seen.
♠ To make clear the phases of Wilson fermions, we intend to
investigate of Nf = 2(and larger) in SU(2) with twisted mass
term (µγ5τ3) and with the limit of µ→ 0 at β = 0.
=⇒ mπ = 0 or 6= 0? 〈ψ̄γ5τ3ψ〉 =? =⇒ In progress



Discussion: What is the unknown phase?

♠ Our finding in PRD80(’09)074508
presented in this talk (Plaq., m2

π and mq behaviours)
→ Indication of universal phenomena as
(1st order) Bulk phase transition at strong coupling
⇐ the appearance of high- and low-plaquette phase

Y. Iwasaki et al, PRL69(’92)21, PRD69(’04)014507.
→ deconfining
JLQCD (S. Aoki et al), PRD72(’05)054510.
Nf = 3 Clover fermion→ unphysical phase
F.R. Brown et al, PRD46(’92)5655.
→ Nf = 8 staggered fermions
T. DeGrand et al, arXiv:1006.0707 [hep-lat].
→ symmetric repr. of Wilson with SF

• c.f. F. Farchioni et al, Eur.Phys.J.C39(’05)421.
→ metastability in Nf = 2 tmQCD at weak coupling



Additional data



At β = 2
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Figure: Plaquette value as a function of 1/κ at β = 2 in SU(2).
no 1st order transition



At β = 2
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Figure: m2
π and mAWI

q as a function of 1/κ at β = 2 in SU(2).
There seems to be the confinement phase.
The mAWI

q crosses the zero smoothly.



At β = 2
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The fitting in both side for the minimum point is very well.



Creutz ratio χ(2, 2) in SU(2) at β = 0
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In the massive pion phase, χ(2, 2) is small and stable.



In SU(2) at β = 0: NCG(τ) = 1
NMD
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Figure: The plaquette and NCG(τ) versus trajectory index τ in SU(2)

on 82 × 162 at β = 0 and κ = 0.215 with Nf = 6.



In SU(3) at β = 0: NCG(τ) = 1
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∑NMD
i=1 nCG

i (τ)

0 10 20 30
τ = trajectory

10
3

10
4

10
5

N
C

G
(τ

)

from N
f
=8, κ=0.25 configuration

from N
f
=6, κ=0.245 non-thermal.

cold start (U=1)
hot start (U=random)

65% acceptance

0% acceptance

Figure: NCG(τ) versus τ in SU(3) with Nf = 6 on 62 × 122 at β = 0,
κ = 1/4 and NMD = 200.



mρ and mπ/mρ
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Y. Iwasaki et al, PRL69(’92). : Nf = 18 in SU(3)
In confinement phase, the data obey to Aoki’s line.
Polyakov loop > 0 for 1/κ < 1/κd → Deconfinement phase
mπ > 0 for 1/κ < 1/κd.
No negative quark mass (m2

π 6= 2Bmq)



Y. Iwasaki et al, PRL69(’92).
Nf = 7 in SU(3)→ same with Nf = 18 case

In the large Nt, it seems the data deviates from the line.
They didn’t comment about it.



From Iwasaki’s paper



m2
π and mAWI

q vs. 1/κ (in the wide region of 1/κ)
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In large 1/κ, m2
π and mAWI

q are almost independent of Nf .
→ The heavy mode does not affect the vacuum.



Y. Iwasaki et al, : Nf = 7, 18 in SU(3)
In confinement phase, the data obey to Aoki’s line.
Polyakov loop > 0 for 1/κ < 1/κd → Deconfinement phase
mπ > 0 for 1/κ < 1/κd.
No negative quark mass (m2

π 6= 2Bmq)



mAWI
q (T/a) vs. T/a for Nf = 12 at κ = 0.190 on 62 × 122,

82 × 162 and 123 × 24
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Figure: mAWI
q (t) for Nf = 12 at κ = 0.190 in high- and low-plaq. phase .

No plateau in the high-plaquette phase (the massive pion phase)

No negative quark mass (m2
π 6= 2Bmq)⇒ not Sharpe-Singleton

scenario ??



The propagator norm: N = (2κ)2 ∑
~x,t

〈
P(~x, t)P(~0, 0)

〉
∼ 1

m2
π
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In the unknown phase, however, there is not the pole. →Why?


	Introduction
	Our Motivation

	Lattice actions and Simulation details
	Setup

	Result of SU(2) case at =0
	plaquette, m2, mqAWI
	Polyakov loop, Creutz ratio and others

	Result of SU(3) case at =0
	plaquette, m2, mqAWI

	Summary
	Summary and Discussion
	Discussion

	Appendix

