Excited States of the Nucleon in 2+1 flavour QCD

Derek Leinweber CSSM Lattice Collaboration

Key Collaborators: Selim Mahbub, Waseem Kamleh, Ben Lasscock, Peter Moran, Alan Ó Cais and Tony Williams

Centre for the Subatomic Structure of Matter School of Chemistry & Physics University of Adelaide, SA, Australia

Outline

Derek Leinweber Excited States of the Nucleon in 2+1 flavour QCD

→ Ξ → < Ξ →</p>

< 🗇 🕨

Roper Resonance Two-Point Correlation Functions

Roper Resonance

- *Roper resonance* (*P*₁₁) is the first positive parity excited state of the nucleon
- Observed in 1960's from πN scattering
- The resonance is interesting due to its low mass (1440 MeV) relative to the nearest negative-parity (S₁₁) resonance (1535 MeV).
- In a constituent quark model, the Roper state is ≈100 MeV above the S₁₁ (1535 MeV) state.
- The Roper state appeared very high in all previous lattice simulations using the variational method.

ヘロト ヘアト ヘビト ヘビト

Roper Resonance Two-Point Correlation Functions

• Two point correlation function:

$$G_{ij}(t,\vec{p}) = \sum_{\vec{x}} e^{-i\vec{p}.\vec{x}} \langle \Omega | T\{\chi_i(x)\bar{\chi}_j(0)\} | \Omega \rangle.$$

Inserting completeness

$$\sum_{m{B}, ec{p'}, s} |m{B}, ec{p'}, s
angle \langle m{B}, ec{p'}, s| = I$$

Then

$$G_{ij}(t,\vec{p}) = \sum_{B^+} \lambda_{B^+} \bar{\lambda}_{B^+} e^{-E_{B^+}t} \frac{\gamma \cdot p_{B^+} + M_{B^+}}{2E_{B^+}}$$
$$+ \sum_{B^-} \lambda_{B^-} \bar{\lambda}_{B^-} e^{-E_{B^-}t} \frac{\gamma \cdot p_{B^-} - M_{B^-}}{2E_{B^-}}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Roper Resonance Two-Point Correlation Functions

λ_{B[±]}, λ
_{B[±]} are the couplings of χ(0) and χ
(0) with |B[±]⟩ defined by

$$egin{aligned} &\langle \Omega | \chi(\mathbf{0}) | \mathcal{B}^+, ec{p}, s
angle &= \lambda_{\mathcal{B}^+} \sqrt{rac{M_{\mathcal{B}^+}}{E_{\mathcal{B}^+}}} u_{\mathcal{B}^+}(ec{p}, s), \ &\langle \mathcal{B}^+, ec{p}, s | ec{\chi}(\mathbf{0}) | \Omega
angle &= ar{\lambda}_{\mathcal{B}^+} \sqrt{rac{M_{\mathcal{B}^+}}{E_{\mathcal{B}^+}}} ar{u}_{\mathcal{B}^+}(ec{p}, s), \end{aligned}$$

and for the negative parity states,

$$egin{aligned} &\langle \Omega | \chi(\mathbf{0}) | m{B}^-, m{ec{p}}, m{s}
angle &= \lambda_{B^-} \sqrt{rac{M_{B^-}}{E_{B^-}}} \gamma_5 u_{B^-}(m{ec{p}}, m{s}), \ &\langle m{B}^-, m{ec{p}}, m{s} | ar{\chi}(\mathbf{0}) | \Omega
angle &= -ar{\lambda}_{B^-} \sqrt{rac{M_{B^-}}{E_{B^-}}} ar{u}_{B^-}(m{ec{p}}, m{s}) \gamma_5. \end{aligned}$$

イロト 不得 トイヨト イヨト

э

Roper Resonance Two-Point Correlation Functions

$$\begin{split} \mathbf{G}_{ij}^{\pm}(t,\vec{0}) &= \mathrm{Tr}_{\mathrm{sp}}[\Gamma_{\pm}\mathbf{G}_{ij}(t,\vec{0})] \\ &= \sum_{\mathbf{B}^{\pm}} \lambda_{i}^{\pm} \bar{\lambda}_{j}^{\pm} \mathbf{e}^{-M_{\mathbf{B}^{\pm}}t}. \end{split}$$

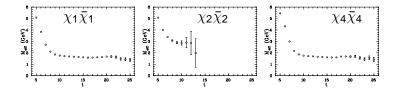
Parity projection operator,

$$\Gamma_{\pm}=\frac{1}{2}(1\pm\gamma_0).$$

And

$$\mathbf{G}_{ij}^{\pm}(t,\vec{0}) \stackrel{t\to\infty}{=} \lambda_{i0}^{\pm} \bar{\lambda}_{j0}^{\pm} \mathbf{e}^{-M_{0\pm}t}$$

ヘロト 人間 とくほとう ほとう


ъ

Roper Resonance Two-Point Correlation Functions

Interpolators

Consider

$$egin{aligned} \chi_1(x) &= \epsilon^{abc}(u^{Ta}(x)\,C\gamma_5\,d^b(x))\,u^c(x)\,,\ \chi_2(x) &= \epsilon^{abc}(u^{Ta}(x)\,C\,d^b(x))\,\gamma_5\,u^c(x)\,,\ \chi_4(x) &= \epsilon^{abc}(u^{Ta}(x)\,C\gamma_5\gamma_4\,d^b(x))\,u^c(x). \end{aligned}$$

Derek Leinweber Excited States of the Nucleon in 2+1 flavour QCD

э

Formalism Eigenstate-Projected Correlators Approximate Eigenvector Invariance

Variational Method

• Consider N interpolating fields, then

$$\bar{\phi}^{\alpha} = \sum_{i=1}^{N} u_i^{\alpha} \bar{\chi}_i,$$
$$\phi^{\alpha} = \sum_{i=1}^{N} v_i^{\alpha} \chi_i,$$

such that,

$$\langle {\cal B}_{\!eta}, {m
ho}, {m s} | ar \phi^lpha | \Omega
angle = \delta_{lphaeta} ar z^lpha ar u(lpha, {m
ho}, {m s}),$$

$$\langle \Omega | \phi^{\alpha} | B_{\beta}, p, s \rangle = \delta_{\alpha\beta} z^{\alpha} u(\alpha, p, s),$$

イロト イポト イヨト イヨト

ъ

Formalism Eigenstate-Projected Correlators Approximate Eigenvector Invariance

• Then a two point correlation function matrix for $\vec{p} = 0$, $G_{ij}^{\pm}(t)u_j^{\alpha} = (\sum_{\vec{x}} \operatorname{Tr}_{\operatorname{sp}}\{\Gamma_{\pm}\langle \Omega | \chi_i \bar{\chi}_j | \Omega \rangle\})u_j^{\alpha}$ $= \lambda_i^{\alpha} \bar{z}^{\alpha} e^{-m_{\alpha} t}.$

(no sum over α)

• t dependence only in the exponential term

イロト 不得 とくほ とくほ とう

3

Formalism Eigenstate-Projected Correlators Approximate Eigenvector Invariance

• Then one can have a recurrence relation at time $(t_0 + \triangle t)$,

$$G_{ij}(t_0 + \triangle t)u_j^{\alpha} = e^{-m_{\alpha} \triangle t}G_{ij}(t_0)u_j^{\alpha}.$$

• Multiplying by $[G_{ij}(t_0)]^{-1}$ from left,

$$[(G(t_0))^{-1}G(t_0+\bigtriangleup t)]_{ij}u_j^{\alpha}=c^{\alpha}u_i^{\alpha},$$

- where $c^{\alpha} = e^{-m_{\alpha} \Delta t}$ is the eigenvalue.
- Similarly, it can also be solved for the left eigenvalue equation for v^α eigenvector,

$$v_i^{lpha}[G(t_0+ riangle t)(G(t_0))^{-1}]_{ij}=c^{lpha}v_j^{lpha}.$$

イロト 不得 とくほ とくほ とう

э

Formalism Eigenstate-Projected Correlators Approximate Eigenvector Invariance

• The vectors u_j^{α} and v_i^{α} diagonalize the correlation matrix at time t_0 and $t_0 + \triangle t$ making the projected correlation function

$$v_i^{lpha} \mathbf{G}_{ij}(t) u_j^{eta} = \delta^{lphaeta} \mathbf{z}^{lpha} \bar{\mathbf{z}}^{eta} \mathbf{e}^{-m_{lpha}t}$$

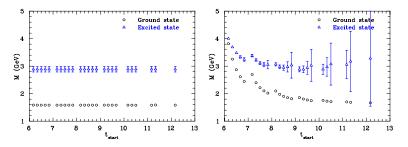
 The projected correlator, is then analyzed to obtain masses of different states,

$$v^{lpha}_i G^{\pm}_{ij}(t) u^{lpha}_j \equiv G^{lpha}_{\pm},$$

• We construct the effective mass

$$M^lpha_{
m eff}(t) = \ln\left(rac{G^lpha_\pm(t,ec{0})}{G^lpha_\pm(t+1,ec{0})}
ight).$$

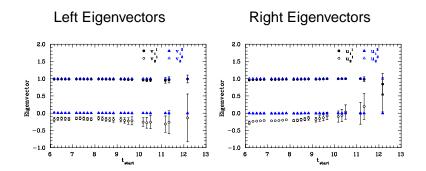
・ 同 ト ・ ヨ ト ・ ヨ ト


Formalism Eigenstate-Projected Correlators Approximate Eigenvector Invariance

Mass From Eigenvalue

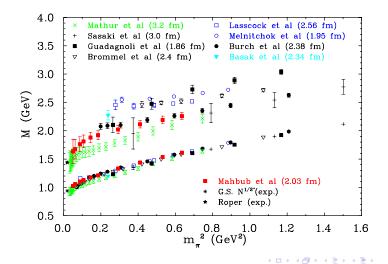
 2×2 correlation matrix of $\chi_1 \chi_2$ for a point source

Vs

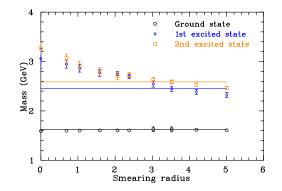

Projected Mass

- $t_{\text{start}} = t_0$ is shown in major tick marks
- $\triangle t$ is shown in minor tick marks

Formalism Eigenstate-Projected Correlators Approximate Eigenvector Invariance

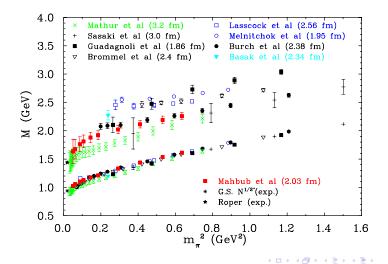

Eigenvectors - Point Source, for $\chi_1\chi_2$

э


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE

Roper state: Compilation of existing results in QQCD

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD


Smeared Source Problem

M. S. Mahbub, *et al.*, Phys. Rev. D **80**, 054507 (2009) [arXiv:0905.3616 [hep-lat]]

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE

Roper state: Compilation of existing results in QQCD

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

Source Smearing

Correlation matrices are built from a variety of source and sink smearings.

$$\psi_i(\mathbf{x},t) = \sum_{\mathbf{x}'} F(\mathbf{x},\mathbf{x}') \psi_{i-1}(\mathbf{x}',t),$$

where,

$$\begin{aligned} F(\boldsymbol{x}, \boldsymbol{x}') &= (1 - \alpha) \delta_{\boldsymbol{x}, \boldsymbol{x}'} + \frac{\alpha}{6} \sum_{\mu=1}^{3} [U_{\mu}(\boldsymbol{x}) \delta_{\boldsymbol{x}', \boldsymbol{x} + \hat{\mu}} \\ &+ U_{\mu}^{\dagger}(\boldsymbol{x} - \hat{\mu}) \delta_{\boldsymbol{x}', \boldsymbol{x} - \hat{\mu}}], \end{aligned}$$

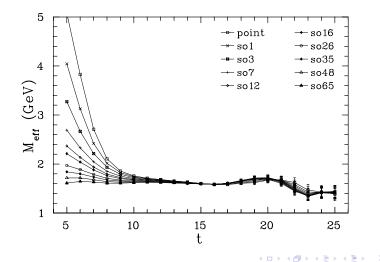
Fixing $\alpha = 0.7$, the procedure is repeated $N_{\rm sm}$ times.

くロト (得) (目) (日)

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

4 \times 4 bases of $\chi_1 \bar{\chi}_1$

- Consider smeared-smeared correlation functions
- Variety of smearing sweeps used to form basis interpolators


Sweeps \rightarrow	1	3	7	12	16	26	35	48	
Basis No. ↓	Bases								
1	1	-	7	-	16	-	35	-	
2	-	3	7	-	16	-	35	-	
3	1	-	-	12	-	26	-	48	
4	-	3	-	12	-	26	35	-	
5	-	3	-	12	-	26	-	48	
6	-	-	-	12	16	26	35	-	
7	-	-	7	-	16	-	35	48	

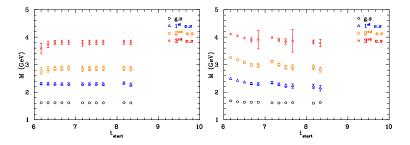
< ∃⇒

< 🗇 🕨

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

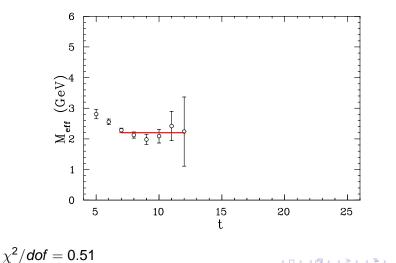
Smeared Source - Point Sink Correlators

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE


 4×4 correlation matrix for the 4th basis (3, 12, 26, 35)

Vs

Projected Mass


Mass From Eigenvalue

- $t_{\text{start}} = t_0$ is shown in major tick marks
- $\triangle t$ is shown in minor tick marks

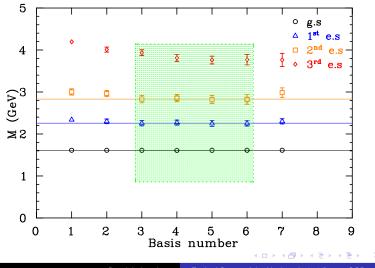
Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

Effective Mass of Roper: 5th Basis

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

4 \times 4 bases of $\chi_1 \overline{\chi}_1$

Sweeps \rightarrow	1	3	7	12	16	26	35	48	
Basis No. \downarrow	Bases								
1	1	-	7	-	16	-	35	-	
2	-	3	7	-	16	-	35	-	
3	1	-	-	12	-	26	-	48	
4	-	3	-	12	-	26	35	-	
5	-	3	-	12	-	26	-	48	
6	-	-	-	12	16	26	35	-	
7	-	-	7	-	16	-	35	48	

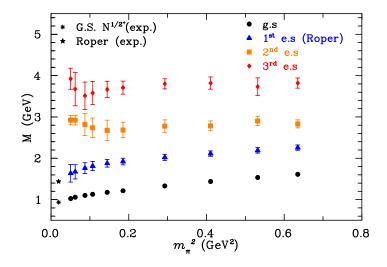

Derek Leinweber Excited States of the Nucleon in 2+1 flavour QCD

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

ъ

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

Projected correlator masses from 4×4 analysis



 Introduction
 Methodology and Status

 Variational Method
 N1/2⁻ State and the Level Crossing

 Lattice Simulation Results
 Roper State in Dynamical-Fermion QCD

 Summary of Results
 N1/2⁻ State in Dynamical-Fermion QCD

Mahbub et al., Phys. Lett. B 679, 418 (2009), [arXiv:hep-lat/0906.5433].

ヨト・モラト

э

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

6×6 bases of $\chi_1 \bar{\chi}_1$

Sweeps \rightarrow	1	3	7	12	16	26	35	48	
Basis No. ↓	Bases								
1	1	3	7	12	16	26	-	-	
2	1	3	7	12	16	-	35	-	
3	1	3	7	-	16	26	35	-	
4	1	3	-	12	16	26	-	48	
5	1	-	7	12	16	26	35	-	
6	-	3	7	12	16	26	35	-	

イロト イポト イヨト イヨト

ъ

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

6×6 bases of $\chi_1 \chi_2$

Sweeps \rightarrow	1	3	7	12	16	26	35	48		
Basis No. ↓		Bases								
1	1	-	-	-	16	-	-	48		
2	-	3	-	12	-	26	-	-		
3	-	3	-	-	16	-	-	48		
4	-	-	7	-	16	-	35	-		
5	-	-	-	12	16	26	-	-		
6	-	-	-	-	16	26	35	-		

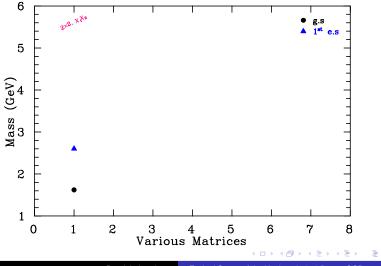
イロト イポト イヨト イヨト

3

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

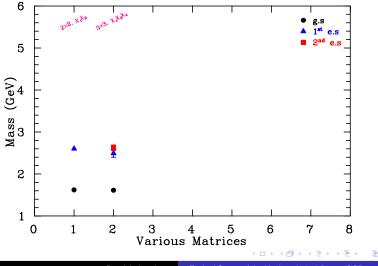
8 × 8 bases of $\chi_1 \chi_2$

Sweeps \rightarrow	1	3	7	12	16	26	35	48	
Basis No. \downarrow	Bases								
1	1	-	7	-	16	-	35	-	
2	-	-	7	12	16	26	-	-	
3	-	3	-	12	-	26	-	48	
4	-	-	7	12	-	26	35	-	
5	-	-	7	-	16	26	35	-	
6	-	-	7	-	16	-	35	48	
7	-	-	-	12	16	26	35	-	

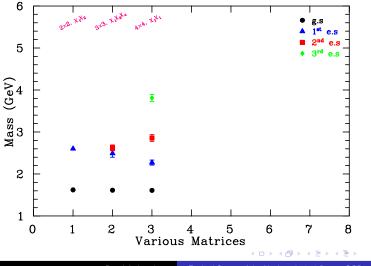

Derek Leinweber Excited States of the Nucleon in 2+1 flavour QCD

イロト 不得 トイヨト イヨト

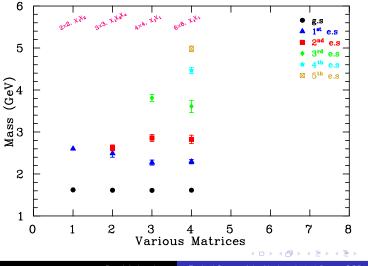
ъ


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

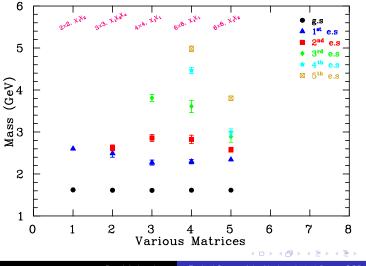
Review of excited "states"


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

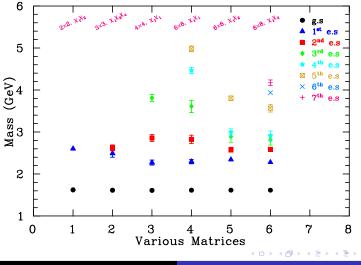
Review of excited "states"


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

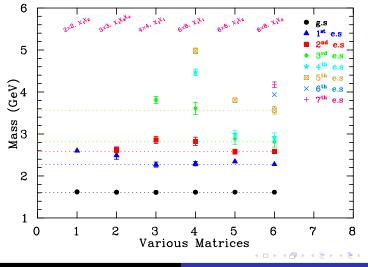
Review of excited "states"


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

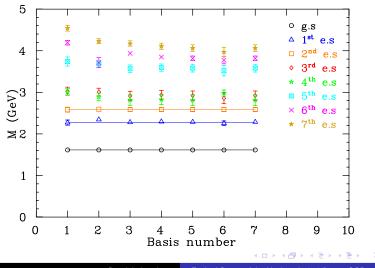
Review of excited "states"


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

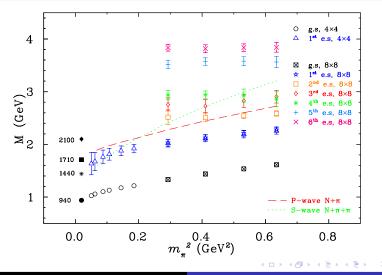
Review of excited "states"


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

Review of excited "states"


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

Review of excited "states"


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

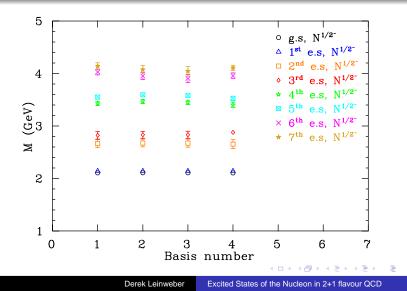
Projected masses from 8 \times 8 analysis of $\chi_1 \chi_2$

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

Positive Parity Results

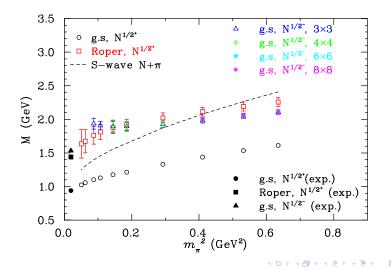
Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

8 × 8 bases of $\chi_1 \chi_2$ for $N1/2^-$ Analysis


Sweeps \rightarrow	1	3	7	12	16	26	35	48		
Basis No. \downarrow	Bases									
1	-	3	-	12	-	26	-	48		
2	-	-	7	12	-	26	35	-		
3	-	-	7	-	16	26	35	-		
4	-	-	7	-	16	-	35	48		

イロト イボト イヨト イヨト

э


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

Projected $N1/2^-$ masses from 8 × 8 bases

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

Roper and $N1/2^-$ states

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

PACS-CS lattice: Simulation details

PACS-CS Collaboration: S. Aoki, et al., Phys. Rev. **D79** (2009) 034503.

- Lattice volume: $32^3 \times 64$
- Non-perturbative O(a)-improved Wilson quark action
- Iwasaki gauge action
- 2 + 1 flavour dynamical-fermion QCD
- $\beta = 1.9$ providing a = 0.0907 fm
- $K_{ud} = \{ 0.13700, 0.13727, 0.13754, 0.13770, 0.13781 \}$
- $K_{\rm s} = 0.13660$
- Lightest pion mass is 156 MeV.

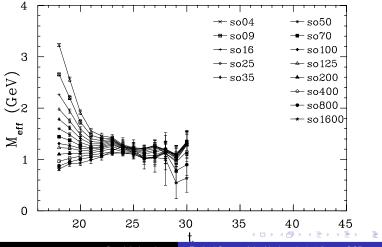
ヘロト 人間 とくほ とくほ とう

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCI

4 \times 4 bases of $\chi_1 \bar{\chi}_1$

Sweeps \rightarrow	16	25	35	50	70	100	125	200	400	800
Basis No. \downarrow	Bases									
1	16	-	35	-	70	100	-	-	-	-
2	16	-	35	-	70	-	125	-	-	-
3	16	-	35	-	-	100	-	200	-	-
4	16	-	35	-	-	100	-	-	400	-
5	16	-	-	50	-	100	125	-	-	-
6	16	-	-	50	-	100	-	200	-	-
7	16	-	-	50	-	-	125	-	-	800
8	-	25	-	50	-	100	-	200	-	-
9	-	25	-	50	-	100	-	-	400	-
10	-	-	35	-	70	-	125	-	400	-

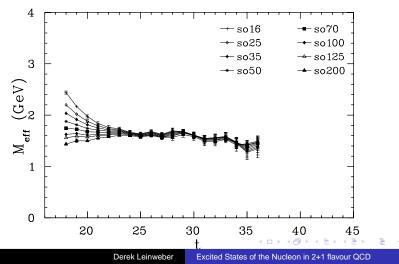
Derek Leinweber Excited States of the Nucleon in 2+1 flavour QCD


イロト 不得 トイヨト 不良 トー

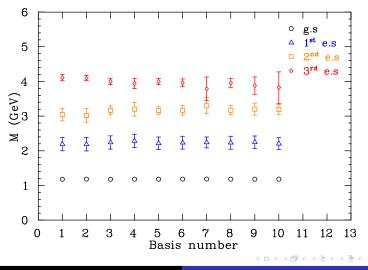
æ.

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

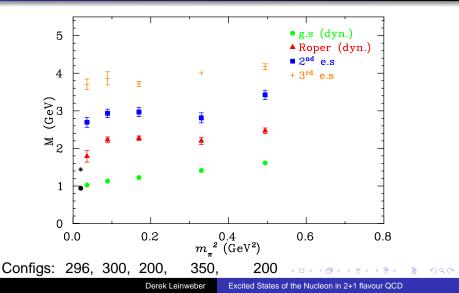
Smeared Source - Point Sink Effective Masses


For second lightest quark : 50 cfgs

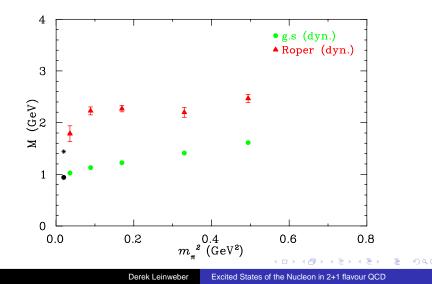
Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD


Smeared Source - Point Sink Effective Masses

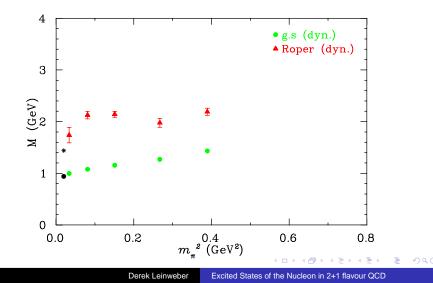
For the heaviest quark: 50 cfgs


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE

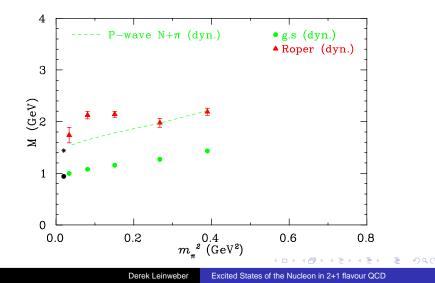
For all 4×4 bases: $K_{ud} = 0.137700$


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE

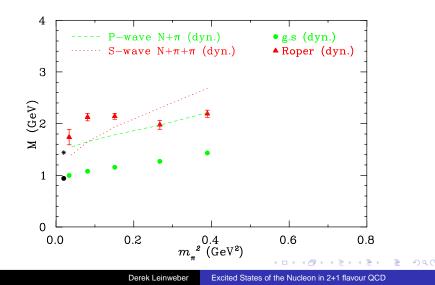
Even Parity Nucleon Spectrum in full QCD


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCE

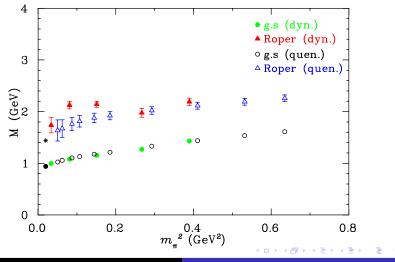
Ground and Roper states (fixed lattice spacing)


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCI

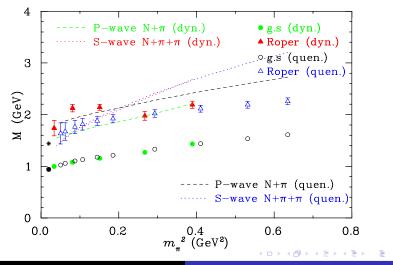
Ground and Roper states (Sommer scale sets a)


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCI

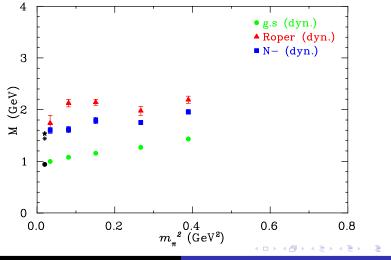
Ground and Roper states (Sommer scale sets a)


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCI

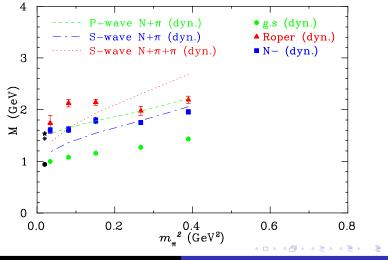
Ground and Roper states (Sommer scale sets a)


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

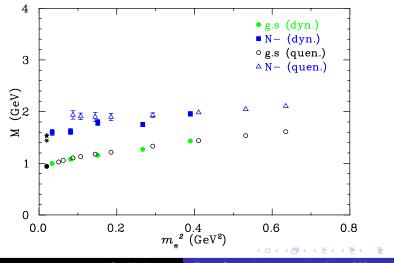
Quenched Vs Dynamical (Sommer scale)


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

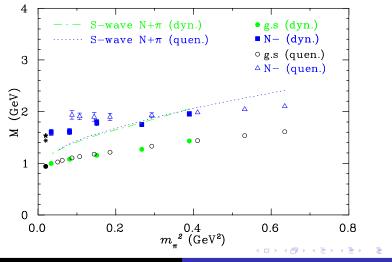
Quenched Vs Dynamical (Sommer scale)


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

N_{2}^{1-} (1535) (Sommer scale)


Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

N_{2}^{1-} (1535) (Sommer scale)

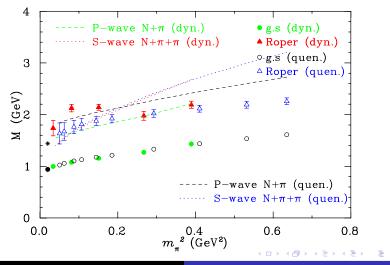

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

Quenched Vs Dynamical N_2^{1-} (1535) (Sommer scale)

Methodology and Status N1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2⁻ State in Dynamical-Fermion QCD

Quenched Vs Dynamical N_2^{1-} (1535) (Sommer scale)

Roper State N1/2⁻ State Future Plans


Summary

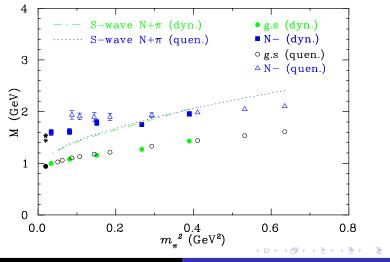
- Several fermion-source and -sink smearing levels have been used to construct correlation matrices.
- A variety of 4 × 4, 6 × 6, and 8 × 8 matrices were considered to demonstrate the independence of the eigenstate energies from the basis interpolators.
- A low-lying Roper state has been identified in both quenched and full QCD using this correlation-matrix based method.
- The approach to the chiral limit is significantly different.
- The two heaviest quark masses considered in the dynamical case provide states consistent with *P*-wave πN scattering states.

ヘロト ヘアト ヘビト ヘビト

Roper State N1/2⁻ State Future Plans

Quenched Vs Dynamical (Sommer scale)

Roper State *N*1/2⁻⁻ State Future Plans


Summary continued...

- The *N*1/2⁻ results in quenched and dynamical QCD reveal significant differences in the approach to the physical point.
- A level crossing between the Roper and $N1/2^-$ states is observed in quenched QCD at $m_{\pi} \simeq 400$ MeV.
- A level crossing between the Roper and $N1/2^-$ states is anticipated in full QCD at $m_{\pi} \simeq 150$ MeV, just above the physical pion mass.
- The approach to the experimentally measured masses is encouraging.
- The effects of the finite volume and the role of scattering states remains to be resloved.

ヘロト 人間 とくほ とくほ とう

Roper State *N*1/2⁻ State Future Plans

Quenched Vs Dynamical N_2^{1-} (1535) (Sommer scale)

Roper State *N*1/2⁻ State Future Plans

Future Plans

- Complete all quark masses at 400 configs (800 at lightest mass).
- Explore chiral curvature via chiral effective field theory.
- Extend to a comprehensive analysis of all baryons of interest.
- Complete determination of excited-state electromagnetic properties.

ヘロト ヘアト ヘビト ヘビト