

R. Horsley¹, G. Hotzel², E.-M. Ilgenfritz³, Y. Nakamura⁴, H. Perlt², P.E.L. Rakow⁵, G. Schierholz^{4,6} and A. Schiller²

¹University Edinburgh, ²Universität Leipzig, ³Universität Bielefeld, ⁴Universität Regensburg, ⁵University Liverpool, ⁶DESY

Lattice 2010, Villasimius, Italy

Wilson loops and NSPT

Outline

Introduction

Results

- Perturbative coefficients $W_{NM}^{(n)}$
- Perturbative model on finite lattices
- Boosted perturbation theory
- Gluon condensate

3 Summary

Outline

Introduction

Results

- Perturbative coefficients $W_{NM}^{(n)}$
- Perturbative model on finite lattices
- Boosted perturbation theory
- Gluon condensate

3 Summary

Outline

Introduction

Results

- Perturbative coefficients $W_{NM}^{(n)}$
- Perturbative model on finite lattices
- Boosted perturbation theory
- Gluon condensate

Motivation

- Lattice gauge theory provides a promising tool to calculate the non-perturbative gluon condensate (^α/_π G G) from Wilson loops
- Study of the large order behaviour of perturbative series on the lattice (Factorial behaviour or (still) not???)
- Influence of the choice of the gauge action
- Investigation of Wilson loops of different sizes: $1 \times 1 \rightarrow N \times M$

・ 同 ト ・ ヨ ト ・ ヨ

Motivation

- Lattice gauge theory provides a promising tool to calculate the non-perturbative gluon condensate (^α/_π G G) from Wilson loops
- Study of the large order behaviour of perturbative series on the lattice (Factorial behaviour or (still) not???)
- Influence of the choice of the gauge action
- Investigation of Wilson loops of different sizes: $1 \times 1 \rightarrow N \times M$

Motivation

- Lattice gauge theory provides a promising tool to calculate the non-perturbative gluon condensate (^α/_π G G) from Wilson loops
- Study of the large order behaviour of perturbative series on the lattice (Factorial behaviour or (still) not???)
- Influence of the choice of the gauge action
- Investigation of Wilson loops of different sizes: $1 \times 1 \rightarrow N \times M$

- 4 同 ト 4 ヨ ト 4 ヨ ト

- Lattice gauge theory provides a promising tool to calculate the non-perturbative gluon condensate (^α/_π G G) from Wilson loops
- Study of the large order behaviour of perturbative series on the lattice (Factorial behaviour or (still) not???)
- Influence of the choice of the gauge action
- Investigation of Wilson loops of different sizes: $1 \times 1 \rightarrow N \times M$

- Standard diagrammatic approach in LPT is restricted essentially to two-loop
- Di Renzo et al. formulated the so-called Numerical Stochastic Perturbation Theory (NSPT)
- Especially suited for quantities without IR divergencies
- Our case: Wilson loops $W_{NM}(n^*) = \sum_{n=0}^{n^*} W_{NM}^{(n)}(g^2)^n$

▲ □ ▶ ▲ □ ▶ ▲

- Standard diagrammatic approach in LPT is restricted essentially to two-loop
- Di Renzo et al. formulated the so-called Numerical Stochastic Perturbation Theory (NSPT)
- Especially suited for quantities without IR divergencies
- Our case: Wilson loops $W_{NM}(n^*) = \sum_{n=0}^{n^*} W_{NM}^{(n)}(g^2)^n$

A (1) > A (2) > A

- Standard diagrammatic approach in LPT is restricted essentially to two-loop
- Di Renzo et al. formulated the so-called Numerical Stochastic Perturbation Theory (NSPT)
- Especially suited for quantities without IR divergencies
- Our case: Wilson loops $W_{NM}(n^*) = \sum_{n=0}^{n^*} W_{NM}^{(n)}(g^2)^n$

< 17 ► < 17 ► ►

- Standard diagrammatic approach in LPT is restricted essentially to two-loop
- Di Renzo et al. formulated the so-called Numerical Stochastic Perturbation Theory (NSPT)
- Especially suited for quantities without IR divergencies
- Our case: Wilson loops $W_{NM}(n^*) = \sum_{n=0}^{n^*} W_{NM}^{(n)}(g^2)^n$

▲□ ► < □ ►</p>

Computational framework:

- Quenched Wilson (plaquette) gauge action and tree-level improved Symanzik gauge action
- NSPT up to order n = 20 for Wilson loops W_{NM}
- Lattice sizes L^4 with L = 4, 6, 8, 10, 12 for plaquette gauge action
- Lattice sizes L^4 with L = 4, 6, 8, 10 for Symanzik gauge action
- Computation on Linux/HP-clusters at Leipzig university, at HLRN and on a NEC SX-9 computer of RCNP at Osaka university

Computational framework:

- Quenched Wilson (plaquette) gauge action and tree-level improved Symanzik gauge action
- NSPT up to order n = 20 for Wilson loops W_{NM}
- Lattice sizes L^4 with L = 4, 6, 8, 10, 12 for plaquette gauge action
- Lattice sizes L^4 with L = 4, 6, 8, 10 for Symanzik gauge action
- Computation on Linux/HP-clusters at Leipzig university, at HLRN and on a NEC SX-9 computer of RCNP at Osaka university

Computational framework:

- Quenched Wilson (plaquette) gauge action and tree-level improved Symanzik gauge action
- NSPT up to order n = 20 for Wilson loops W_{NM}
- Lattice sizes L^4 with L = 4, 6, 8, 10, 12 for plaquette gauge action
- Lattice sizes L^4 with L = 4, 6, 8, 10 for Symanzik gauge action
- Computation on Linux/HP-clusters at Leipzig university, at HLRN and on a NEC SX-9 computer of RCNP at Osaka university

Computational framework:

- Quenched Wilson (plaquette) gauge action and tree-level improved Symanzik gauge action
- NSPT up to order n = 20 for Wilson loops W_{NM}
- Lattice sizes L^4 with L = 4, 6, 8, 10, 12 for plaquette gauge action
- Lattice sizes L^4 with L = 4, 6, 8, 10 for Symanzik gauge action
- Computation on Linux/HP-clusters at Leipzig university, at HLRN and on a NEC SX-9 computer of RCNP at Osaka university

< ロ > < 同 > < 回 > < 回 > < 回 > <

Computational framework:

- Quenched Wilson (plaquette) gauge action and tree-level improved Symanzik gauge action
- NSPT up to order n = 20 for Wilson loops W_{NM}
- Lattice sizes L^4 with L = 4, 6, 8, 10, 12 for plaquette gauge action
- Lattice sizes L^4 with L = 4, 6, 8, 10 for Symanzik gauge action
- Computation on Linux/HP-clusters at Leipzig university, at HLRN and on a NEC SX-9 computer of RCNP at Osaka university

イロト イポト イラト イラト

Perturbative coefficients: plaquette gauge action

For L = 12 we get for some moderate Wilson loop sizes and plaquette gauge action:

Perturbative coefficients: Symanzik gauge action

For L = 8 we get for some moderate Wilsonloop sizes and Symanzik gauge action:

Comparison plaquette and Symanzik

L = 8 - coefficients for plaquette and Symanzik gauge action:

Results

Perturbative coefficients $W_{NMA}^{(n)}$

 Symanzik coefficients fluctuate (sign changes) more than their plaquette pendants

• Symanzik coefficients are considerably smaller than in the plaquette case

• (\leftrightarrow) is *compensated* by larger coupling

Comparison plaquette and Symanzik

L = 8 - coefficients for plaquette and Symanzik gauge action:

Results

Perturbative coefficients $W_{NM}^{(n)}$

- Symanzik coefficients fluctuate (sign changes) more than their plaquette pendants
- Symanzik coefficients are considerably smaller than in the plaquette case
- (\leftrightarrow) is *compensated* by larger coupling

Comparison plaquette and Symanzik

L = 8 - coefficients for plaquette and Symanzik gauge action:

Results

Perturbative coefficients $W_{had}^{(n)}$

- Symanzik coefficients fluctuate (sign changes) more than their plaquette pendants
- Symanzik coefficients are considerably smaller than in the plaquette case
- (\leftrightarrow) is *compensated* by larger coupling

Talk H. Perlt (Leipzig)

Wilson loops and NSPT

• Define coefficients c_n (for each (N, M)!) via $W(g^2) = \sum c_n g^{2n}$

• Ratio $r_n = c_n/c_{n-1}$ can be described surprisingly well by

Results

$$r_n(u, q, t, s) = u \frac{n^2 + (s - q - 1)n + t}{n(n + s)} \quad (1)$$

- Convergence radius $g^2 < 1/u \rightarrow$ summable (hyperbolic function)
- Total sum → hypergeometric model
- (1) works well for moderate *N* × *M*-loops plaquette:

 $1 \times 1, 2 \times 1, 3 \times 1, 4 \times 1 \ (n \ge 2), 2 \times 2, 3 \times 2 \ (n \ge 4)$ Symanzik:

- $1 \times 1 \ (n \ge 2); 2 \times 1, 3 \times 1, 2 \times 2 \ (n \ge 4)$
- Up to loop-order n = 20 no factorial behaviour found!

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- Define coefficients c_n (for each (N, M)!) via $W(g^2) = \sum c_n g^{2n}$
- Ratio $r_n = c_n/c_{n-1}$ can be described surprisingly well by

Results

$$r_n(u, q, t, s) = u \frac{n^2 + (s - q - 1)n + t}{n(n + s)} \quad (1)$$

- Convergence radius $g^2 < 1/u \rightarrow$ summable (hyperbolic function)
- Total sum → hypergeometric model
- (1) works well for moderate *N* × *M*-loops plaquette:

 1×1 , 2×1 , 3×1 , 4×1 $(n \ge 2)$, 2×2 , 3×2 $(n \ge 4)$ Symanzik:

- $1 \times 1 \ (n \ge 2); 2 \times 1, 3 \times 1, 2 \times 2 \ (n \ge 4)$
- Up to loop-order n = 20 no factorial behaviour found!

- Define coefficients c_n (for each (N, M)!) via $W(g^2) = \sum c_n g^{2n}$
- Ratio $r_n = c_n/c_{n-1}$ can be described surprisingly well by

Results

$$r_n(u, q, t, s) = u \frac{n^2 + (s - q - 1)n + t}{n(n + s)} \quad (1)$$

- Convergence radius $g^2 < 1/u \rightarrow$ summable (hyperbolic function)
- Total sum → hypergeometric model
- (1) works well for moderate *N* × *M*-loops plaquette:

 $1 \times 1, 2 \times 1, 3 \times 1, 4 \times 1 \ (n \ge 2), 2 \times 2, 3 \times 2 \ (n \ge 4)$ Symanzik:

- $1 \times 1 \ (n \ge 2); 2 \times 1, 3 \times 1, 2 \times 2 \ (n \ge 4)$
- Up to loop-order n = 20 no factorial behaviour found!

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

- Define coefficients c_n (for each (N, M)!) via $W(g^2) = \sum c_n g^{2n}$
- Ratio $r_n = c_n/c_{n-1}$ can be described surprisingly well by

Results

$$r_n(u, q, t, s) = u \frac{n^2 + (s - q - 1)n + t}{n(n + s)} \quad (1)$$

- Convergence radius $g^2 < 1/u \rightarrow$ summable (hyperbolic function)
- Total sum → hypergeometric model
- (1) works well for moderate N × M-loops plaquette:

 $1 \times 1, 2 \times 1, 3 \times 1, 4 \times 1 \ (n \ge 2), 2 \times 2, 3 \times 2 \ (n \ge 4)$ Symanzik:

- $1 \times 1 \ (n \ge 2); 2 \times 1, 3 \times 1, 2 \times 2 \ (n \ge 4)$
- Up to loop-order n = 20 no factorial behaviour found!

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

- Define coefficients c_n (for each (N, M)!) via $W(g^2) = \sum c_n g^{2n}$
- Ratio $r_n = c_n/c_{n-1}$ can be described surprisingly well by

Results

$$r_n(u, q, t, s) = u \frac{n^2 + (s - q - 1)n + t}{n(n + s)} \quad (1)$$

- Convergence radius $g^2 < 1/u \rightarrow$ summable (hyperbolic function)
- Total sum → hypergeometric model
- (1) works well for moderate *N* × *M*-loops plaquette:

 $1 \times 1, 2 \times 1, 3 \times 1, 4 \times 1 \ (n \ge 2), 2 \times 2, 3 \times 2 \ (n \ge 4)$ Symanzik:

 $\overline{1 \times 1 \ (n \ge 2)}; 2 \times 1, 3 \times 1, 2 \times 2 \ (n \ge 4)$

• Up to loop-order n = 20 no factorial behaviour found!

- Define coefficients c_n (for each (N, M)!) via $W(g^2) = \sum c_n g^{2n}$
- Ratio $r_n = c_n/c_{n-1}$ can be described surprisingly well by

Results

$$r_n(u, q, t, s) = u \frac{n^2 + (s - q - 1)n + t}{n(n + s)} \quad (1)$$

- Convergence radius $g^2 < 1/u \rightarrow$ summable (hyperbolic function)
- Total sum → hypergeometric model
- (1) works well for moderate *N* × *M*-loops plaquette:

 $1 \times 1, 2 \times 1, 3 \times 1, 4 \times 1 \ (n \ge 2), 2 \times 2, 3 \times 2 \ (n \ge 4)$ Symanzik:

 $\overline{1 \times 1 \ (n \ge 2)}; 2 \times 1, 3 \times 1, 2 \times 2 \ (n \ge 4)$

• Up to loop-order n = 20 no factorial behaviour found!

ヨト イヨト ニヨー

Example Domb-Sykes plots

< 回 > < 回 > < 回 >

• Bare lattice coupling g^2 - bad expansion parameter

- Use instead $g_b^2 = g^2 / W_{11,pert}$ boosted coupling
- Reordering of perturbative coefficients $c_n
 ightarrow c_n^{(b)}$
- $\left. \begin{array}{c} g_b^2 > g^2 \\ |c_n^{(b)}| \ll |c_n| \end{array} \right\}$ improved convergence behaviour
- First successful application: Rakow (2005)
- Further advantage: no model assumption neccessary

- Bare lattice coupling g^2 bad expansion parameter
- Use instead $g_b^2 = g^2/W_{11,pert}$ boosted coupling
- Reordering of perturbative coefficients $c_n \rightarrow c_n^{(b)}$
- $\left. \begin{array}{c} g_b^2 > g^2 \\ |c_n^{(b)}| \ll |c_n| \end{array}
 ight\}$ improved convergence behaviour
- First successful application: Rakow (2005)
- Further advantage: no model assumption neccessary

- Bare lattice coupling g^2 bad expansion parameter
- Use instead $g_b^2 = g^2/W_{11,pert}$ boosted coupling
- Reordering of perturbative coefficients $c_n \rightarrow c_n^{(b)}$
- $\left. \begin{array}{c} g_b^2 > g^2 \\ |c_n^{(b)}| \ll |c_n| \end{array} \right\}$ improved convergence behaviour
- First successful application: Rakow (2005)
- Further advantage: no model assumption neccessary

- Bare lattice coupling g^2 bad expansion parameter
- Use instead $g_b^2 = g^2/W_{11,pert}$ boosted coupling
- Reordering of perturbative coefficients $c_n \rightarrow c_n^{(b)}$
- $\left. \begin{array}{c} g_b^2 > g^2 \\ |c_n^{(b)}| \ll |c_n| \end{array} \right\}$ improved convergence behaviour
- First successful application: Rakow (2005)
- Further advantage: no model assumption neccessary

- Bare lattice coupling g^2 bad expansion parameter
- Use instead $g_b^2 = g^2/W_{11,pert}$ boosted coupling
- Reordering of perturbative coefficients $c_n \rightarrow c_n^{(b)}$
- $\left. \begin{array}{c} g_b^2 > g^2 \\ |c_n^{(b)}| \ll |c_n| \end{array} \right\}$ improved convergence behaviour
- First successful application: Rakow (2005)
- Further advantage: no model assumption neccessary

- Bare lattice coupling g^2 bad expansion parameter
- Use instead $g_b^2 = g^2/W_{11,pert}$ boosted coupling
- Reordering of perturbative coefficients $c_n \rightarrow c_n^{(b)}$
- $\left. \begin{array}{c} g_b^2 > g^2 \\ |c_n^{(b)}| \ll |c_n| \end{array} \right\}$ improved convergence behaviour
- First successful application: Rakow (2005)
- Further advantage: no model assumption neccessary

Example plot

 $W_{11,pert}(n^*)$: perturbative series summed up to n^* Chosen coupling g^2 at convergence limit

Talk H. Perlt (Leipzig)

Wilson loops and NSPT

• $\langle GG \rangle$ as introduced by SVZ is an OPE quantitiy and has dimension $(\Lambda)^4$

● → on the lattice we would expect:

 $a^4 \langle GG
angle pprox {\sf P}_{{\sf PT}}(n^\star) + \Delta_{n^\star}, \quad \Delta_{n^\star} \propto c_4 \, (a \Lambda)^4$

 $(n^*: order of lattice perturbation theory)$

- Speculations: $\Delta_{n^*} \propto c_2 (a\Lambda)^2 + c_4 (a\Lambda)^4$
- Narison/Zakharov: $c_2(n^*) (a\Lambda)^2$ is due to small n^* , for large n^* they expect $\Delta_{n^*} \propto c_4(n^*) (a\Lambda)^4$

- $\langle GG \rangle$ as introduced by SVZ is an OPE quantitiy and has dimension $(\Lambda)^4$
- \rightarrow on the lattice we would expect:

$$a^4 \langle GG
angle pprox {\it P}_{PT}(n^\star) + \Delta_{n^\star}, \quad \Delta_{n^\star} \propto c_4 \, (a \Lambda)^4$$

$(n^{\star}: order of lattice perturbation theory)$

- Speculations: $\Delta_{n^*} \propto c_2 (a\Lambda)^2 + c_4 (a\Lambda)^4$
- Narison/Zakharov: $c_2(n^*) (a\Lambda)^2$ is due to small n^* , for large n^* they expect $\Delta_{n^*} \propto c_4(n^*) (a\Lambda)^4$

- $\langle GG \rangle$ as introduced by SVZ is an OPE quantitiy and has dimension $(\Lambda)^4$
- \rightarrow on the lattice we would expect:

$$a^4 \langle GG
angle pprox {\it P}_{PT}(n^\star) + \Delta_{n^\star}, \quad \Delta_{n^\star} \propto c_4 \, (a \Lambda)^4$$

 $(n^*:$ order of lattice perturbation theory)

- Speculations: $\Delta_{n^{\star}} \propto c_2 \, (a\Lambda)^2 + c_4 \, (a\Lambda)^4$
- Narison/Zakharov: $c_2(n^*) (a\Lambda)^2$ is due to small n^* , for large n^* they expect $\Delta_{n^*} \propto c_4(n^*) (a\Lambda)^4$

< A > < > >

- $\langle GG \rangle$ as introduced by SVZ is an OPE quantitiy and has dimension $(\Lambda)^4$
- \rightarrow on the lattice we would expect:

$$a^4 \langle GG
angle pprox {\it P_{PT}}(n^\star) + \Delta_{n^\star}, \quad \Delta_{n^\star} \propto c_4 \, (a \Lambda)^4$$

 $(n^{\star}: order of lattice perturbation theory)$

- Speculations: $\Delta_{n^{\star}} \propto c_2 (a\Lambda)^2 + c_4 (a\Lambda)^4$
- Narison/Zakharov: $c_2(n^*) (a\Lambda)^2$ is due to small n^* , for large n^* they expect $\Delta_{n^*} \propto c_4(n^*) (a\Lambda)^4$

Gluon condensate

c_4 and c_2 , plaquette action, L=12

 Naive LPT: n^{*} ≤ 20: NSPT data, n^{*} > 20: hypergeometric model series expansion

c_{i.as}: values for the total sum of hypergeometric model

- Boosted LPT: only data for n^{*} ≤ 20
- Conclusion: boosted LPT approaches asymptotic value very early

Talk H. Perlt (Leipzig)

Wilson loops and NSPT

Gluon condensate

c_4 and c_2 , plaquette action, L=12

- Naive LPT: n^{*} ≤ 20: NSPT data, n^{*} > 20: hypergeometric model series expansion
- *c_{i,as}*: values for the total sum of hypergeometric model
- Boosted LPT: only data for $n^* \leq 20$
- Conclusion: boosted LPT approaches asymptotic value very early

Gluon condensate

c_4 and c_2 , plaquette action, L=12

- Naive LPT: n^{*} ≤ 20: NSPT data, n^{*} > 20: hypergeometric model series expansion
- *c_{i,as}*: values for the total sum of hypergeometric model
- Boosted LPT: only data for $n^* \leq 20$
- Conclusion: boosted LPT approaches asymptotic value very early

c_4 and c_2 , plaquette action, L=12

- Naive LPT: n^{*} ≤ 20: NSPT data, n^{*} > 20: hypergeometric model series expansion
- $c_{i,as}$: values for the total sum of hypergeometric model
- Boosted LPT: only data for $n^* \leq 20$
- Conclusion: boosted LPT approaches asymptotic value very early

c_4 and c_2 , Symanzik action, L=8

 c₄(n^{*}): Symanzik action (left: red) reaches asymptotiv value much erarlier than plaquette action

 c₂(n^{*}): Symanzik action (right: blue) reaches the (smaller) asymptotic value earlier than plaquette action (right: red)

B → < B

< A >

c_4 and c_2 , Symanzik action, L=8

- c₄(n^{*}): Symanzik action (left: red) reaches asymptotiv value much erarlier than plaquette action
- c₂(n^{*}): Symanzik action (right: blue) reaches the (smaller) asymptotic value earlier than plaquette action (right: red)

Using the model function and/or the boosted perturbation theory we can estimate $\langle \alpha/\pi GG \rangle$ from plaquette ($P = W_{11}$)

$$a^4rac{\pi^2}{36} [rac{b_0 g^2}{eta(g)}] \langle lpha / \pi G G
angle = P_{MC} - P_{PT} = \Delta P$$

Systematic uncertainties:

Choice of the action: plaquette/Symanzik

• Choice of β -range

Naive vs. boosted perturbation theory

Choice of size of Wilson loop - area law ansatz (?)

Using the model function and/or the boosted perturbation theory we can estimate $\langle \alpha/\pi GG \rangle$ from plaquette ($P = W_{11}$)

$$a^4rac{\pi^2}{36}[rac{b_0g^2}{eta(g)}]\langlelpha/\pi GG
angle=P_{MC}-P_{PT}=\Delta P$$

Systematic uncertainties:

• Choice of the action: plaquette/Symanzik

- Choice of β -range
- Naive vs. boosted perturbation theory
- Choice of size of Wilson loop area law ansatz (?)

Using the model function and/or the boosted perturbation theory we can estimate $\langle \alpha/\pi GG \rangle$ from plaquette ($P = W_{11}$)

$$a^4rac{\pi^2}{36}[rac{b_0g^2}{eta(g)}]\langlelpha/\pi GG
angle=P_{MC}-P_{PT}=\Delta P$$

Systematic uncertainties:

- Choice of the action: plaquette/Symanzik
- Choice of β-range
- Naive vs. boosted perturbation theory
- Choice of size of Wilson loop area law ansatz (?)

Using the model function and/or the boosted perturbation theory we can estimate $\langle \alpha/\pi GG \rangle$ from plaquette ($P = W_{11}$)

$$a^4rac{\pi^2}{36}[rac{b_0g^2}{eta(g)}]\langlelpha/\pi GG
angle=P_{MC}-P_{PT}=\Delta P$$

Systematic uncertainties:

- Choice of the action: plaquette/Symanzik
- Choice of β -range
- Naive vs. boosted perturbation theory

Choice of size of Wilson loop - area law ansatz (?)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Using the model function and/or the boosted perturbation theory we can estimate $\langle \alpha/\pi GG \rangle$ from plaquette ($P = W_{11}$)

$$a^4rac{\pi^2}{36}[rac{b_0g^2}{eta(g)}]\langlelpha/\pi GG
angle=P_{MC}-P_{PT}=\Delta P$$

Systematic uncertainties:

- Choice of the action: plaquette/Symanzik
- Choice of β-range
- Naive vs. boosted perturbation theory
- Choice of size of Wilson loop area law ansatz (?)

Action	L ⁴	'Method'	W _{NM}	$\langle \alpha / \pi GG \rangle [GeV^4]$
plaquette	8 ⁴	naive LPT	<i>W</i> ₁₁	0.037
plaquette	12 ⁴	naive LPT	W_{11}	0.042
plaquette	12 ⁴	boosted LPT	W_{11}	0.046
Symanzik	8 ⁴	naive LPT	W_{11}	0.039
Symanzik	10 ⁴	naive LPT	W_{11}	0.033

For larger Wilson loops the modified difference ansatz

 $\mathcal{S}^2_{\it NM} \langle lpha / \pi {\it GG}
angle \propto {\it W}_{\it NM,MC} - {\it W}_{\it NM,PT}$

leads to **very small** $\langle \alpha / \pi GG \rangle$ with increasing loop area S_{NM}

< 🗇 > < 🖻 > <

Action	L ⁴	'Method'	W_{NM}	$\langle \alpha / \pi GG \rangle [GeV^4]$
plaquette	8 ⁴	naive LPT	<i>W</i> ₁₁	0.037
plaquette	12 ⁴	naive LPT	<i>W</i> ₁₁	0.042
plaquette	12 ⁴	boosted LPT	<i>W</i> ₁₁	0.046
Symanzik	8 ⁴	naive LPT	W_{11}	0.039
Symanzik	10 ⁴	naive LPT	<i>W</i> ₁₁	0.033

For larger Wilson loops the modified difference ansatz

$$\mathcal{S}^2_{\it NM}\langle lpha/\pi GG
angle \propto W_{\it NM,MC}-W_{\it NM,PT}$$

leads to very small $\langle \alpha / \pi GG \rangle$ with increasing loop area S_{NM}

< □ > < □ >

??? Try a new ansatz ???

$$W_{\textit{NM},\textit{MC}} = W_{\textit{NM},\textit{PT}} \left(1 - \textit{const} \, \mathcal{S}^2_{\textit{NM}} \left\langle lpha / \pi \textit{GG}
ight
angle
ight)$$

This gives

Action	L ⁴	W _{NM}	$\langle \alpha / \pi GG \rangle [GeV^4]$
plaquette	12 ⁴	<i>W</i> ₂₁	0.025
plaquette	12 ⁴	<i>W</i> ₃₁	0.024
plaquette	12 ⁴	W ₂₂	0.023
Symanzik	10 ⁴	<i>W</i> ₂₁	0.034
Symanzik	10 ⁴	<i>W</i> ₃₁	0.019
Symanzik	10 ⁴	W ₂₂	0.015

Talk H. Perlt (Leipzig)

- Wilson loops of different sizes up to loop-order n = 20 for plaquette and Symanzik gauge actions
- No factorial behaviour of perturbative coefficients for both actions
- Symanzik action shows improved convergence behaviour
- Comparison: hypergeometric model vs. boosted perturbation theory successful
- Possible a^2 -dependence of $\langle \alpha / \pi GG \rangle$ decreases significantly with loop order
- Estimates for (α/πGG): W₁₁ consistent with former lattice results; larger Wilson loops - new ansatz could be needed

- Wilson loops of different sizes up to loop-order n = 20 for plaquette and Symanzik gauge actions
- No factorial behaviour of perturbative coefficients for both actions
- Symanzik action shows improved convergence behaviour
- Comparison: hypergeometric model vs. boosted perturbation theory successful
- Possible a^2 -dependence of $\langle \alpha / \pi GG \rangle$ decreases significantly with loop order
- Estimates for (α/πGG): W₁₁ consistent with former lattice results; larger Wilson loops - new ansatz could be needed

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Wilson loops of different sizes up to loop-order n = 20 for plaquette and Symanzik gauge actions
- No factorial behaviour of perturbative coefficients for both actions
- Symanzik action shows improved convergence behaviour
- Comparison: hypergeometric model vs. boosted perturbation theory successful
- Possible a^2 -dependence of $\langle \alpha / \pi GG \rangle$ decreases significantly with loop order
- Estimates for (α/πGG): W₁₁ consistent with former lattice results; larger Wilson loops - new ansatz could be needed

- Wilson loops of different sizes up to loop-order n = 20 for plaquette and Symanzik gauge actions
- No factorial behaviour of perturbative coefficients for both actions
- Symanzik action shows improved convergence behaviour
- Comparison: hypergeometric model vs. boosted perturbation theory successful
- Possible a^2 -dependence of $\langle \alpha / \pi GG \rangle$ decreases significantly with loop order
- Estimates for (α/πGG): W₁₁ consistent with former lattice results; larger Wilson loops - new ansatz could be needed

- Wilson loops of different sizes up to loop-order n = 20 for plaquette and Symanzik gauge actions
- No factorial behaviour of perturbative coefficients for both actions
- Symanzik action shows improved convergence behaviour
- Comparison: hypergeometric model vs. boosted perturbation theory successful
- Possible a^2 -dependence of $\langle \alpha / \pi GG \rangle$ decreases significantly with loop order
- Estimates for (α/πGG): W₁₁ consistent with former lattice results; larger Wilson loops - new ansatz could be needed

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Wilson loops of different sizes up to loop-order n = 20 for plaquette and Symanzik gauge actions
- No factorial behaviour of perturbative coefficients for both actions
- Symanzik action shows improved convergence behaviour
- Comparison: hypergeometric model vs. boosted perturbation theory successful
- Possible a^2 -dependence of $\langle \alpha / \pi GG \rangle$ decreases significantly with loop order
- Estimates for (α/πGG): W₁₁ consistent with former lattice results; larger Wilson loops - new ansatz could be needed

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >