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Introduction

Motivation

Lattice gauge theory provides a promising tool to calculate the
non-perturbative gluon condensate 〈απG G〉 from Wilson loops
Study of the large order behaviour of perturbative series on the
lattice (Factorial behaviour or (still) not???)
Influence of the choice of the gauge action
Investigation of Wilson loops of different sizes: 1× 1→ N ×M
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Introduction

Numerical stochastic perturbation theory (NSPT)

Standard diagrammatic approach in LPT is restricted essentially
to two-loop
Di Renzo et al. formulated the so-called Numerical Stochastic
Perturbation Theory (NSPT)
Especially suited for quantities without IR divergencies

Our case: Wilson loops WNM(n?) =
∑n?

n=0 W (n)
NM (g2)n
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Introduction

Computer implementation of NSPT

Computational framework:

Quenched Wilson (plaquette) gauge action and tree-level
improved Symanzik gauge action
NSPT up to order n = 20 for Wilson loops WNM

Lattice sizes L4 with L = 4,6,8,10,12 for plaquette gauge action
Lattice sizes L4 with L = 4,6,8,10 for Symanzik gauge action
Computation on Linux/HP-clusters at Leipzig university, at HLRN
and on a NEC SX-9 computer of RCNP at Osaka university
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Results Perturbative coefficients W (n)
NM

Perturbative coefficients: plaquette gauge action

For L = 12 we get for some moderate Wilson loop sizes and plaquette
gauge action:
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Results Perturbative coefficients W (n)
NM

Perturbative coefficients: Symanzik gauge action

For L = 8 we get for some moderate Wilsonloop sizes and Symanzik
gauge action:
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Results Perturbative coefficients W (n)
NM

Comparison plaquette and Symanzik

L = 8 - coefficients for plaquette and Symanzik gauge action:
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Symanzik coefficients are considerably smaller than in the
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(↔) is compensated by larger coupling
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Results Perturbative model on finite lattices

Model ansatz

Define coefficients cn (for each (N,M)!) via W (g2) =
∑

cn g2n

Ratio rn = cn/cn−1 can be described surprisingly well by

rn(u,q, t , s) = u
n2 + (s − q − 1)n + t

n (n + s)
(1)

Convergence radius g2 < 1/u → summable (hyperbolic function)
Total sum→ hypergeometric model
(1) works well for moderate N ×M-loops
plaquette:
1× 1, 2× 1, 3× 1, 4× 1 (n ≥ 2), 2× 2, 3× 2 (n ≥ 4)
Symanzik:
1× 1 (n ≥ 2); 2× 1, 3× 1, 2× 2 (n ≥ 4)

Up to loop-order n = 20 no factorial behaviour found!
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Results Perturbative model on finite lattices

Example Domb-Sykes plots
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Results Boosted perturbation theory

Boosted perturbation theory

Bare lattice coupling g2 - bad expansion parameter
Use instead g2

b = g2/W11,pert - boosted coupling

Reordering of perturbative coefficients cn → c(b)
n

g2
b > g2

|c(b)
n | � |cn|

}
improved convergence behaviour

First successful application: Rakow (2005)
Further advantage: no model assumption neccessary
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Results Boosted perturbation theory

Example plot
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Results Gluon condensate

Gluon condensate ?

〈GG〉 as introduced by SVZ is an OPE quantitiy and has
dimension (Λ)4

→ on the lattice we would expect:

a4〈GG〉 ≈ PPT (n?) + ∆n? , ∆n? ∝ c4 (aΛ)4

(n? : order of lattice perturbation theory)
Speculations: ∆n? ∝ c2 (aΛ)2 + c4 (aΛ)4

Narison/Zakharov: c2(n?) (aΛ)2 is due to small n?,
for large n? they expect ∆n? ∝ c4(n?) (aΛ)4
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Results Gluon condensate

c4 and c2, plaquette action, L=12
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series expansion
ci,as: values for the total sum of hypergeometric model
Boosted LPT: only data for n? ≤ 20
Conclusion: boosted LPT approaches asymptotic value very early
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Results Gluon condensate

c4 and c2, Symanzik action, L=8
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asymptotic value earlier than plaquette action (right: red)
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Results Gluon condensate

Gluon condensate estimate(s)

Using the model function and/or the boosted perturbation theory we
can estimate 〈α/πGG〉 from plaquette (P = W11)

a4 π
2

36
[b0g2

β(g)

]〈α/πGG〉 = PMC − PPT = ∆P

Systematic uncertainties:

Choice of the action: plaquette/Symanzik
Choice of β-range
Naive vs. boosted perturbation theory
Choice of size of Wilson loop - area law ansatz (?)
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Results Gluon condensate

Gluon condensate estimate(s)

Action L4 ’Method’ WNM 〈α/πGG〉 [GeV 4]

plaquette 84 naive LPT W11 0.037
plaquette 124 naive LPT W11 0.042
plaquette 124 boosted LPT W11 0.046
Symanzik 84 naive LPT W11 0.039
Symanzik 104 naive LPT W11 0.033

For larger Wilson loops the modified difference ansatz

S2
NM〈α/πGG〉 ∝WNM,MC −WNM,PT

leads to very small 〈α/πGG〉 with increasing loop area SNM
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Results Gluon condensate

Gluon condensate estimate(s)

??? Try a new ansatz ???

WNM,MC = WNM,PT (1− const S2
NM 〈α/πGG〉)

This gives

Action L4 WNM 〈α/πGG〉 [GeV 4]

plaquette 124 W21 0.025
plaquette 124 W31 0.024
plaquette 124 W22 0.023
Symanzik 104 W21 0.034
Symanzik 104 W31 0.019
Symanzik 104 W22 0.015
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Summary

Summary

Wilson loops of different sizes up to loop-order n = 20 for
plaquette and Symanzik gauge actions
No factorial behaviour of perturbative coefficients for both actions
Symanzik action shows improved convergence behaviour
Comparison: hypergeometric model vs. boosted perturbation
theory successful
Possible a2-dependence of 〈α/πGG〉 decreases significantly with
loop order
Estimates for 〈α/πGG〉: W11 - consistent with former lattice
results; larger Wilson loops - new ansatz could be needed
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