Nucleon and $N^*(1535)$ Distribution Amplitudes

Rainer W. Schiel¹

Institut für Theoretische Physik, Universität Regensburg

June 17, 2010

¹V. M. Braun, S. Collins, M. Göckeler, T. R. Hemmert, R. Horsley, T. Kaltenbrunner, A. Lenz, Y. Nakamura, D. Pleiter, P. E. L. Rakow, J. Rohrwild, A. Schäfer, G. Schierholz, H. Stüben, N. Warkentin, P. Wein, J. M. Zanotti [QCDSF collaboration]

Rainer W. Schiel (Regensburg)

Lattice 2010 1 / 16

Motivation

- Wanted: Hadron wave function
- Experiment:
 - Form factor measurements at JLab (especially with the 12 GeV upgrade), FAIR, ...
 - Light-Cone Sum Rules relate form factor data to distribution amplitudes
- Theory:
 - Direct calculation of distribution amplitudes from Lattice QCD

Outline

Nucleon Distribution Amplitudes in the Continuum and on the Lattice

Parity Separation

Results

Normalization Constants Distribution Amplitudes

Conclusions and Outlook

Distribution Amplitudes in the Continuum

- In leading twist
 - with transverse momentum components integrated out
 - the nucleon wave function can be written as

$$|N,\uparrow\rangle = f_N \int \frac{[dx]\varphi(x_i)}{2\sqrt{24x_1x_2x_3}} \{|u^{\uparrow}(x_1)u^{\downarrow}(x_2)d^{\uparrow}(x_3)\rangle - |u^{\uparrow}(x_1)d^{\downarrow}(x_2)u^{\uparrow}(x_3)\rangle\}$$

- where
 - x_i: longitudinal momentum fractions
 - $\int [dx] = \int_0^1 dx_1 dx_2 dx_3 \delta(1 x_1 x_2 x_3)$
 - f_N : Leading-twist normalization constant, "Wave function at the Origin"
 - $\varphi(x_i)$: Nucleon Distribution Amplitude
- in next-to-leading twist
 - λ₁, λ₂: Next-to-leading twist normalization constants

Distribution Amplitudes on the Lattice

On the lattice, calculate correlators of the form

 $\langle \mathcal{O}(\mathbf{x})_{lphaeta\gamma} \bar{\mathcal{N}}(\mathbf{y})_{ au}
angle$

- where
 - \mathcal{N} is a smeared nucleon interpolator
 - O is a local three-quark operator with up to two derivatives
- ► to determine moments of the distribution amplitude

$$\varphi^{lmn} = \int [d\mathbf{x}] \mathbf{x}_1^l \mathbf{x}_2^m \mathbf{x}_3^n \varphi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$$

- Limited to first and second moments $(l + m + n \le 2)$ due to
 - Mixing with lower dimensional operators for higher moments
 - Need for higher momenta \rightarrow more noise

Overview of lattices

 $N_f = 2$ clover Wilson fermions

κ	$m_{\pi}/$ MeV	Size	# Configurations
eta= 5.29, $a=$ 0.0753 fm			
0.13590	627	$24^3 imes 48$	901
0.13620	407	$24^3 imes 48$	850
0.13632	282	$32^3 imes 64$	578 + more
			in progress
0.13632	271	$40^3 imes 64$	in progress
0.13640	170	$40^3 \times 64$	coming soon
eta = 5.40, $a =$ 0.0672 fm			
0.13610	648	$24^3 imes 48$	687
0.13625	558	$24^3 imes 48$	1180
0.13640	451	$24^3 imes 48$	1037
0.13660	233	$48^3 \times 64$	coming soon

[QCDSF collaboration]

New configurations are being generated on

Parity separation

The generalized Lee-Leinweber parity projector, $\frac{1}{2}\Gamma(1 + \frac{m}{E}\gamma_4)$, where Γ is a suitable product of γ_i matrices, works well for all operator-momentum combinations that are used here

Dispersion Relation

- According to Einstein, ^{E²}/_{m²} = 1 + ^{p²}/_{m²} (dotted line)
 All results preliminary, statistical errors only

Dispersion Relation

- According to Einstein, ^{E²}/_{m²} = 1 + ^{p²}/_{m²} (dotted line)
 All results preliminary, statistical errors only

Wave functions at the origin

All results preliminary, statistical errors only, no chiral extrapolation

Next-to-leading twist Normalization Constants

All results preliminary, statistical errors only, no chiral extrapolation

Rainer W. Schiel (Regensburg)

Next-to-leading twist Normalization Constants

All results preliminary, statistical errors only, no chiral extrapolation

Rainer W. Schiel (Regensburg)

Leading-One-Loop Baryon χPT for λ_1

$$\lambda_{1} = \frac{4}{m_{N}} \left[\alpha \left(1 + \frac{3}{64\pi^{2}f^{2}} \left(1 + 3g_{A}^{2} \right) m_{\pi}^{2} \ln \frac{\lambda^{2}}{m_{\pi}^{2}} - \frac{3g_{A}^{2}}{32\pi^{2}f^{2}} m_{\pi}^{2} + \frac{1}{64\pi^{2}f^{2}} \frac{m_{\pi}^{3}}{M} \frac{(12g_{A} + 18g_{A}^{2}) - (3g_{A} + 6g_{A}^{2})\frac{m_{\pi}^{2}}{M^{2}}}{\sqrt{1 - \frac{m_{\pi}^{2}}{4M^{2}}}} \arccos \frac{m_{\pi}}{2M} + \frac{1}{64\pi^{2}f^{2}} \frac{m_{\pi}^{4}}{M^{2}} \left(3g_{A} + 6g_{A}^{2} \right) \ln \frac{m_{\pi}^{2}}{M^{2}} \right) + \epsilon^{(r)}(\lambda)m_{\pi}^{2} \right]$$

 (Wein, Hemmert, Schäfer, in preparation)

•
$$\alpha, \epsilon^{(r)}$$
: free parameters

•
$$f = \sqrt{2}f_{\pi}$$

- g_A : axial coupling constant
- λ : renormalization scale
- *M* = 938MeV

χ PT-fit to λ_1 of the Nucleon

(thanks to Philipp Wein)

All results preliminary, statistical errors only, chiral extrapolation!

Rainer W. Schiel (Regensburg)

Wave functions and Distribution amplitudes

 Expand wave function in multiplicatively renormalizable terms (Braun, Manashov, Rohrwild):

$$\begin{split} \varphi(\mathbf{x}_{i};\mu^{2}) = & 120x_{1}x_{2}x_{3} \Big\{ 1 + \boldsymbol{c_{10}}(x_{1} - 2x_{2} + x_{3})L^{\frac{8}{3\beta_{0}}} \\ &+ \boldsymbol{c_{11}}(x_{1} - x_{3})L^{\frac{20}{9\beta_{0}}} + \boldsymbol{c_{20}} \left[1 + 7(x_{2} - 2x_{1}x_{3} - 2x_{2}^{2}) \right]L^{\frac{14}{3\beta_{0}}} \\ &+ \boldsymbol{c_{21}} \left(1 - 4x_{2} \right) (x_{1} - x_{3})L^{\frac{40}{9\beta_{0}}} \\ &+ \boldsymbol{c_{22}} \left[3 - 9x_{2} + 8x_{2}^{2} - 12x_{1}x_{3} \right]L^{\frac{32}{9\beta_{0}}} + \ldots \Big\} \end{split}$$

- where $L \equiv \alpha_s(\mu)/\alpha_s(\mu_0)$
- ► **c**_{*ij*}: "shape parameters" are obtained from a constrained fit to φ^{lmn} with $l + m + n \le i$ such that $\varphi^{lmn} = \varphi^{(l+1)mn} + \varphi^{l(m+1)n} + \varphi^{lm(n+1)}$ is fulfilled

Shape parameters

- c_{1i} are significantly different from zero, both for the nucleon and $N^*(1535)$
- All results preliminary, statistical errors only, no chiral extrapolation

Shape parameters (II)

- The distribution amplitude of the N*(1535) is much more asymmetric than that of the nucleon
- All results preliminary, statistical errors only, no chiral extrapolation

Conclusions and Outlook

- ► f_N , f_{N^*} , λ_1 , λ_2 and the first two moments of the nucleon and $N^*(1535)$ distribution amplitudes have been calculated at several pion masses, the lowest being $m_{\pi} = 282$ MeV
- Finer and larger volume lattices are still being investigated
- Chiral Perturbation Theory calculations for more quantities in progress
- Next big step: extension of this study to all octet and decuplet baryons

