NEUTRAL B MESON MIXING WITH 2+1 FLAVOR DOMAIN-WALL LIGHT AND STATIC HEAVY QUARKS

Yasumichi Aoki (RIKEN BNL) 6/15/2010 @ Lattice 2010

$B^0 - \overline{B^0}$ mixing in the Standard Model

 $\Delta m_d = 0.507(5) \text{ps}^{-1}$ PDG

$$\Delta m_s = 17.77(12) \text{ps}^{-1}$$
 CDF

• $B_q^0 - \overline{B_q^0}$ oscillation frequency (q = d, s)

 $\Delta m_q = (\text{known factor}) \cdot |V_{tb} V_{tq}^*|^2 \mathcal{M}_q,$

• $B_q^0 - \overline{B_q^0}$ mixing matrix elements

$$\mathcal{M}_{\boldsymbol{q}} = \left\langle \bar{B}_{q}^{0} \right| \left[\bar{b} \gamma^{\mu} (\mathbf{1} - \gamma_{5}) \boldsymbol{q} \right] \left[\bar{b} \gamma_{\mu} (\mathbf{1} - \gamma_{5}) \boldsymbol{q} \right] \left| B_{q}^{0} \right\rangle$$

SU(3)_f breaking ratio:

$$\xi \propto \sqrt{\frac{\mathcal{M}_s}{\mathcal{M}_d}} \rightarrow \left| \frac{V_{td}}{V_{ts}} \right| = \frac{1}{\xi} \frac{\Delta m_s}{\Delta m_d} \frac{m_{B_d}}{m_{B_s}}$$

Large fraction of statistical, systematic errors cancel in the ratio ξ.

unitarity triangle: 2 key quantities

- * ξ from $B^0 \overline{B^0}$ and $B_s^0 \overline{B_s^0}$ mixing
- * B_K from $K^0 \overline{K^0}$ mixing
 - * all induced through box diagram (1-loop)
 - * enhanced by quark mass in the internal loop (Inami-Lim function)
 - * high sensitivity to new physics
 - * chiral symmetry is essential for $B_K \rightarrow$ Domain-wall fermions
 - * chiral symmetry helps for determination of ξ

old and new works

* 1st feasibility study on 2+1 flavor DWF ensemble with static b quark

"Neutral B-meson mixing from unquenched lattice QCD with domain-wall light quarks and static b-quarks",

RBC/UKQCD: C. Albertus, YA, P. A. Boyle, N. H. Christ, T. T. Dumitrescu, J. M. Flynn T. Ishikawa, T. Izubuch O. Loktik, C. T. Sachrajda, A. Soni, R. S. Van de Water, J. Wennekers, and O. Witzel

- * $V \sim (1.8 \text{ fm})^3$, $a^{-1} = 1.7$.
- * 2nd study aiming precision (main topic of this talk)
 - * mainly with a subset of US colleague of the 1st paper
 - * RBC/UKQCD under USQCD collaboration project on QCDOC: 24³x64
 - * RBC/UKQCD under RIKEN RICC project: 32³x64
 - * both: $V \sim (2.7 \text{ fm})^3$, $a^{-1}=1.7$ and 2.3 GeV.

ξ : Static approximation on b quark

* our error is large compared to HPQCD or FNAL-MILC

- * ours are feasibility studies
- * significant improvements expected....

f_B and M_B new project

- * b quark static limit [This work]
 - * lighter m_q , larger V, with O(a) improvement
 - * QCDOC(USQCD), RICC (RIKEN)
 - * aiming ξ total error < 5%
 - * investigating non-perturbative renormalization
- * b quark using lattice relativistic heavy quark [O. Witzel (previous talk)]
 - * no (m_ba)ⁿ error, no 1/m_b error
 - * a→0

error reduction strategy

uncertainty	$\frac{f_{B_s}/f_{B_d}}{\rm APE~HYP}$		ξ APE HYP	
statistics	8%	4%	6%	5%
chiral extrapolation	7%	7%	7%	7%
uncertainty in $g_{B^*B\pi}$	3%	3%	2%	2%
discretization error	3%	3%	4%	4%
renormalization factors	0%	0%	2%	2%
scale and quark mass uncertainties	1%	1%	1%	1%
finite volume error	1%	1%	1%	1%
$1/m_b$ corrections	2%	2%	2%	2%
total systematics	9%	9%	9%	9%

RBC/UKQCD 2010

- * main errors for ξ
 - * statistical
 - * chiral extrapolation
 - * discretization

- * source/sink optimization
- * smaller mass
- * 2nd (finer) lattice spacing

static approximation

- * Eichten-Hill action
 - * with smeared links (HYP) to enhance the S/N [Alpha collaboration]
- * $1/m_b$ error (NLO in HQET): $\Lambda/m_b \sim 10\%$
 - * SU(3) breaking ratio: $(m_s-m_d)/m_b \sim 2\%$

$$\xi = 1 + \frac{m_s - m_d}{\Lambda} F(m_d, m_s, m_b)$$
$$= 1 + \frac{m_s - m_d}{\Lambda} (c + c' \frac{\Lambda}{m_b} + \cdots)$$
$$= 1 + c \frac{m_s - m_d}{\Lambda} + c' \frac{m_s - m_d}{m_b} + \cdots$$

method

- * smeared source: beware of O(V) degeneracy of static quark
 (N.Christ, O.Loktik in Lattice 2007 by T. Dumitrescu)
 - * #=V for wall source
 - * $\#=\delta V$ for smeared source
 - * (δV : the 3d volume where smeared source has a support)
- * special ratio of correlation functions
- * how to sample the volume
 - * shifting the source position (in space-time) with trajectory
 - * done in one ensemble (lightest), not in the other 2 (heavier)

tuning of smearing

Test of source combination on small lattice

heavy	wall	point	wall	Gauss
light	wall	Gauss	Gauss wall	Gauss

Gauss smearing uses $\sigma_s = 2$ with Gaussian width $\sigma = \sigma_s/\sqrt{2}$

- quench Wilson $\beta = 5.7$ (a = 0.2 fm), $8^3 \times 16$ ((1.6 fm)³)
- domain wall fermion with L_s = 4, at about strange mass.

source-sink symmetric

<BIVV+AAIB>=<JOJ>/<JJ>

tuning of smearing

Finding optimal Gaussian width

• σ_s = 4

• use smaller volume $16^3 \times 32$, with exactly same parameters as $24^3 \times 64$, except $L_s = 16 \rightarrow 4$, $m_f = 0.02$.

heavy-light measurements

- * ensemble: 2+1 f Iwasaki-DWF β =2.13, m_s=0.04, m_{ud}=0.005, 0.01, 0.02
- * light valence: DWF m_s =0.03, 0.04 and m_{ud} =0.005, 0.01, 0.02
- * static quark: Eichten-Hill with HYP smearing (Hasenfratz-Knechtli)
- * both light and static quark source are smeared with the gauge-covariant Gaussian
 - * with pre-smeared links (3d APE)

***** σ=4

heavy-light effective mass

B meson decay constants

B meson decay constants

$$C^{SL}(t) = \sum_{\vec{x}} \langle A_0^L(\vec{x}, t) A_0^S(0)^{\dagger} \rangle,$$

$$C^{SSm}(t) = \sum_{\vec{x}} \langle A_0^S(\vec{x}, t) A_0^S(0)^{\dagger} \rangle,$$

$$\Phi(t) = \frac{\sqrt{2}C^{SL}(t)}{\sqrt{C^{SSm}(t)}} e^{m^* t/2}$$

$$*\mathcal{M} = \langle \overline{B^0} | VV + AA | B^0 \rangle = \frac{\langle J_{B^0}^{\dagger}(t_{sink}) \cdot (VV + AA)(t) \cdot J_{B^0}^{\dagger}(t_{src}) \rangle}{\sqrt{\langle J_{B^0}^{\dagger}(t_{sink}) J_{B^0}(t) \rangle} \cdot \langle J_{B^0}(t) J_{B^0}^{\dagger}(t_{src}) \rangle}} e^{m^*(t_{sink} - t_{src})/2}$$

$$*\mathcal{M} = \langle \overline{B^0} | VV + AA | B^0 \rangle = \frac{\langle J_{B^0}^{\dagger}(t_{sink}) \cdot (VV + AA)(t) \cdot J_{B^0}^{\dagger}(t_{src}) \rangle}{\sqrt{\langle J_{B^0}^{\dagger}(t_{sink}) J_{B^0}(t) \rangle} \cdot \langle J_{B^0}(t) J_{B^0}^{\dagger}(t_{src}) \rangle}} e^{m^*(t_{sink} - t_{src})/2}$$

$$*\mathcal{M} = \langle \overline{B^0} | VV + AA | B^0 \rangle = \frac{\langle J_{B^0}^{\dagger}(t_{sink}) \cdot (VV + AA)(t) \cdot J_{B^0}^{\dagger}(t_{src}) \rangle}{\sqrt{\langle J_{B^0}^{\dagger}(t_{sink}) J_{B^0}(t) \rangle} \cdot \langle J_{B^0}(t) J_{B^0}^{\dagger}(t_{src}) \rangle}} e^{m^*(t_{sink} - t_{src})/2}$$

$$*\mathcal{M} = \langle \overline{B^0} | VV + AA | B^0 \rangle = \frac{\langle J_{B^0}^{\dagger}(t_{sink}) \cdot (VV + AA)(t) \cdot J_{B^0}^{\dagger}(t_{src}) \rangle}{\sqrt{\langle J_{B^0}^{\dagger}(t_{sink}) J_{B^0}(t) \rangle} \cdot \langle J_{B^0}(t) J_{B^0}^{\dagger}(t_{src}) \rangle}} e^{m^*(t_{sink} - t_{src})/2}$$

ξ from double ratio

ξ from double ratio

* O(a) yet to be improved

ξ from double ratio

* O(a) yet to be improved

error budget in ξ

error budget in ξ

	ξ (16 ³) ΑΡΕ ΗΥΡ2	ξ (24 ³) HYP1 preliminary!!!
statistics	6% 5%	2%
chiral extrapolation	7%	4%
uncertainty in $g_{B^*B\pi}$	2%	
discretization error	4%	
renormalization factors	2%	
scale and quark mass uncertainties	1%	
finite volume error	1%	
1/mb corrections	2%	
total systematics	9%	

error budget in ξ

	ξ (16 ³)	ξ (24 ³)	ξ (24 ³)	ξ (32 ³)	ξ (32 ³)	
	APE HYP2	HYP1	HYP2	HYP1	HYP2	
		preliminary!!!	being generated	in preparation	in preparation	
statistics	6% 5%	2%				
chiral extrapolation	7%	4%	make use of partially quenched points			
uncertainty in $g_{B^*B\pi}$	2%	calculate it o	late it or use $g_{B^*B\pi}$ from DWF+RHQ [P. Fritzsch (this morning)]			
discretization error	4%	(O(a) improvement and continuum limit			
renormalization factors	2%					
scale and quark mass uncertainties	1%					
finite volume error	1%		1.5 x physical siz	ze: much smaller		
1/mb corrections	2%					
total systematics	9%		5% in ou	ır scope		
					Martin Martin	

renormalization and O(a)

- * all one loop renormalization factors and the coefficients of O(a) operators have been worked out
 - * by matching matrix elements with on-shell light and heavy quark states
 - * O(a): g^2pa , g^2ma : both had contribution of same order for ξ
 - * T. Ishilawa @ Lattice 2008, T. Izubuchi @ Lattice 2009
 - * will be incorporated in the analysis
- * non-perturbative renormalization: RI/MOM type
 - * T. Izubuchi @ Lattice 2009
 - * will be investigated further
 - * more important for individual matrix elements

Summary and outlook

* Summary

- * 2+1 flavor Iwasaki+DWF and static quarks were used for B mesons
- * tuning of the smearing and source-sink separation brought a dramatic improvement in the statistical error
- * lighter ud mass is helping reduce the systematic error of chiral extrapolation
- * Outlook
 - * partially quenched points will be incorporated in the chiral fits
 - * various fits should be tested: SU(3), SU(2), analytic,..
 - * O(g²a) improvement / 2 different heavy quark actions / continuum limit will help reduce the discretization errors.
 - * total error of $\xi = 5\%$ is within reach
 - * NPR will be investigated

THANK YOU