# Renormalized Polyakov loop in the Fixed Scale Approach

Rajiv V. Gavai T. I. F. R., Mumbai, India

\* arXiv : 1001.4977, submitted to Phys. Lett. B & in preparation.

# Renormalized Polyakov loop in the Fixed Scale Approach

Rajiv V. Gavai T. I. F. R., Mumbai, India

Introduction

Results

Summary

\* arXiv : 1001.4977, submitted to Phys. Lett. B & in preparation.

# Introduction

- Polyakov loop  $L(\vec{x})$  Deconfinement Order Parameter (Spontaneous Breaking of Z(N)) (McLerran & Svetitsky, PRD 1981)
- One hopes to construct effective theories (Pisarski, PRD 2006) of L for investigations of deconfinement phase transitions and many models employ L.

# Introduction

- Polyakov loop  $L(\vec{x})$  Deconfinement Order Parameter (Spontaneous Breaking of Z(N)) (McLerran & Svetitsky, PRD 1981)
- One hopes to construct effective theories (Pisarski, PRD 2006) of L for investigations of deconfinement phase transitions and many models employ L.
- On an Euclidean  $N_{\sigma}^3 \times N_{\tau}$  lattice  $L(\vec{x})$  is defined at a site  $\vec{x}$  as  $L(\vec{x}) = \frac{1}{N_c} \operatorname{Tr} \prod_{x_0=1}^{N_{\tau}} U^4(\vec{x}, x_0).$
- No SSB on finite lattices/volumes. Usually one defines  $\bar{L} = \sum_{\vec{x}} L(\vec{x})/N_{\sigma}^3$ , and employs  $\langle |\bar{L}| \rangle$ , or its susceptibility, to locate the deonfinement phase transition.
- $\langle |\bar{L}| \rangle \to 0$  as 1/Volume in the confined phase, and  $\langle |\bar{L}| \rangle \neq 0$  in the deconfined phase.

• But on the lattice, at fixed  $T = 1/N_{\tau}a$ ,  $L \to 0$  in the continuum limit of  $a \to 0$  even in the deconfined phase.

- But on the lattice, at fixed  $T = 1/N_{\tau}a$ ,  $L \to 0$  in the continuum limit of  $a \to 0$  even in the deconfined phase.
- Like any Wilson loop, Polyakov loop needs to be renormalized.
- More so, since as an order parameter it seeks to label phases by being zero or nonzero.

**\clubsuit** The physical interpretation of L as related to the free energy of a single static quark offers a clue.

♠ The single quark free energy  $F_b(N_\tau, a)$  is obtained from  $\ln \langle |\bar{L}| \rangle = -F_b(T)/T = -aN_\tau F_b(N_\tau, a)$ .

**\clubsuit** The physical interpretation of L as related to the free energy of a single static quark offers a clue.

♠ The single quark free energy  $F_b(N_\tau, a)$  is obtained from  $\ln \langle |\bar{L}| \rangle = -F_b(T)/T = -aN_\tau F_b(N_\tau, a)$ .

 $\diamondsuit$  Earlier attempts to get renormalized L include

**\clubsuit** The physical interpretation of L as related to the free energy of a single static quark offers a clue.

• The single quark free energy  $F_b(N_\tau, a)$  is obtained from  $\ln \langle |\bar{L}| \rangle = -F_b(T)/T = -aN_\tau F_b(N_\tau, a)$ .

 $\diamondsuit$  Earlier attempts to get renormalized L include

- Use of lattice perturbation theory (Heller & Karsch, NPB 1985)
- Use of quark-antiquark (Polyakov loop) correlations (Kaczmarek et al. PLB 2002)

**\clubsuit** The physical interpretation of L as related to the free energy of a single static quark offers a clue.

• The single quark free energy  $F_b(N_\tau, a)$  is obtained from  $\ln \langle |\bar{L}| \rangle = -F_b(T)/T = -aN_\tau F_b(N_\tau, a)$ .

 $\diamondsuit$  Earlier attempts to get renormalized L include

- Use of lattice perturbation theory (Heller & Karsch, NPB 1985)
- Use of quark-antiquark (Polyakov loop) correlations (Kaczmarek et al. PLB 2002)
- Use of  $N_{ au}$ -grids and fits to L (Dumitru et al. PRD 2004)
- Use of renormalization group iteratively (S. Gupta et al. PRD 2008)

#### **Fixed Scale Approach**

 $\heartsuit$  I show (arXiv : 1001.4977) that the fixed scale approach, i.e., varying temperature by changing  $N_{\tau}$ , leads to a simpler and better renormalized L.

### **Fixed Scale Approach**

 $\heartsuit$  I show (arXiv : 1001.4977) that the fixed scale approach, i.e., varying temperature by changing  $N_{\tau}$ , leads to a simpler and better renormalized L.

 $\heartsuit$  Let  $\beta_c$ , corresponding to the position of the peak of the |L|-susceptibility for some fixed  $N_{\tau,c}$ , be the choice of the fixed scale  $a_c$ .

• Further, let it lie in the scaling region, then in the fixed scale approach  $T/T_c = N_{\tau,c}/N_{\tau}$ .

## Fixed Scale Approach

 $\heartsuit$  I show (arXiv : 1001.4977) that the fixed scale approach, i.e., varying temperature by changing  $N_{\tau}$ , leads to a simpler and better renormalized L.

 $\heartsuit$  Let  $\beta_c$ , corresponding to the position of the peak of the |L|-susceptibility for some fixed  $N_{\tau,c}$ , be the choice of the fixed scale  $a_c$ .

• Further, let it lie in the scaling region, then in the fixed scale approach  $T/T_c = N_{\tau,c}/N_{\tau}$ .

Write the single quark free energy as a sum of a would-be divergent and a regular contribution,

 $F_b(T, a_c) = F(T, a_c) - A(a_c),$ 

where A is the would-be divergent free energy in physical units.



$$\frac{T}{T_c} \ln \langle |\bar{L}| \rangle = -\frac{F(T, a_c)}{T_c} + \frac{A(a_c)}{T_c} ,$$

the free energy at any two different scales,  $a_{c1}$  and  $a_{c2}$ , differs by the same constant at all T.

 $\diamond$  Use  $\langle |L| \rangle$  at just one temperature to eliminate the relative shift  $\implies$  All cut-off dependence of the order parameter is gone in the entire *T*-range.



$$\frac{T}{T_c} \ln \langle |\bar{L}| \rangle = -\frac{F(T, a_c)}{T_c} + \frac{A(a_c)}{T_c} ,$$

the free energy at any two different scales,  $a_{c1}$  and  $a_{c2}$ , differs by the same constant at all T.

 $\diamond$  Use  $\langle |L| \rangle$  at just one temperature to eliminate the relative shift  $\implies$  All cut-off dependence of the order parameter is gone in the entire T-range.

In the following, I consider the simple case of SU(2) to demonstrate how well it works. It should work similarly for any  $N_c$  or QCD.

 $\heartsuit$  I employ the critical  $\beta$  for  $N_{\tau} = 4$ , 6, 8 and 12 from the table of Velytsky, IJMP C19, (2008), 1079, which agree with earlier results where available.



• 4 different scales : Tc4, Tc6, Tc8 and Tc12 with  $a \rightarrow 0$  progressively. Increasing Spatial Volume leads to decrease in L for  $T < T_c$ .



• Illustrate for two scales : Different behaviour in T for the Free Energy. Shift F by  $\Delta F(2T_c).$ 



• Free Energy shifted by  $\Delta F(2T_c)$  in each case: three constants for four scales.



• Free Energy shifted by  $\Delta F(2T_c)$  in each case: three constants for four scales.

• For  $T \leq T_c$ , F increases with the spatial volume but scale-independent.



• The shifted Free Energy leads to the renormalized L, which is independent of cut-off for  $\beta \geq 2.2991$ .



• The shifted Free Energy leads to the renormalized L, which is independent of cut-off for  $\beta \geq 2.2991$ .

#### • For $T \leq T_c$ , L decreases with the spatial volume but scale-independent.



– I chose 3 constants to shift all the data to the Tc4 scale : The Tc6, Tc8, Tc12 results have simply jumped to their appropriate place on the  $\langle |L|\rangle$  for it.



- I chose 3 constants to shift all the data to the Tc4 scale : The Tc6, Tc8, Tc12 results have simply jumped to their appropriate place on the  $\langle |L| \rangle$  for it.
- Does the renormalized L then climb to unity slowly?

• High Temperature Perturbation Theory (Gava-Jengo, PLB 1981) tells us that  $L \to 1$  from above at very large T:  $L = 1 + C_3 g^3 + \mathcal{O}(g^4)$ , where  $c_3(N_c) > 0$  is a constant.

- High Temperature Perturbation Theory (Gava-Jengo, PLB 1981) tells us that  $L \to 1$  from above at very large  $T : L = 1 + C_3 g^3 + \mathcal{O}(g^4)$ , where  $c_3(N_c) > 0$  is a constant.
- In stead of shifts at  $2T_c$  for varying scales, try a fit  $-\ln\langle |\bar{L}_j| \rangle = F(2T_c)/2T_c + B \cdot N_{\tau j}/2$ .



**\clubsuit** Eliminating the *B*-dependent divergent term for the Tc4-scale in addition to the shifts, one has,



• L now does go to unity from above at large T. Large volumes, aspect ratio of  $\sim 10$ , needed for  $L \simeq 0$  for low T.

# Summary

- I showed that the fixed scale approach leads to a natural definition of a physical,  $N_{\tau}$ -independent, order parameter which is defined in both the confined and the deconfined phases.
- It does not need two-point correlations, and works for even coarse lattices  $(a \le 1/4T_c)$ .

# Summary

- I showed that the fixed scale approach leads to a natural definition of a physical,  $N_{\tau}$ -independent, order parameter which is defined in both the confined and the deconfined phases.
- It does not need two-point correlations, and works for even coarse lattices  $(a \le 1/4T_c)$ .
- The definition itself does not depend on any lattice artifacts or the lattice size in the deconfined phase.
- It displays the expected behaviour in both the phases, i.e., volume dependence in the low T-phase and approach to unity from above in high T-phase.